Nanotechnology in Cement-Based Construction edited by Antonella D’Alessandro Annibale Luigi Materazzi Filippo Ubertini Nanotechnology in Cement-Based Construction Nanotechnology in Cement-Based Construction edited by Antonella D’Alessandro Annibale Luigi Materazzi Filippo Ubertini Published by JennyStanfordPublishingPte.Ltd. Level34,CentennialTower 3TemasekAvenue Singapore039190 Email:[email protected] Web:www.jennystanford.com British Library Cataloguing-in-Publication Data AcataloguerecordforthisbookisavailablefromtheBritishLibrary. Nanotechnology in Cement-Based Construction Copyright �c 2020JennyStanfordPublishingPte.Ltd. Allrightsreserved.Thisbook,orpartsthereof,maynotbereproducedinany form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not requiredfromthepublisher. ISBN978-981-4800-76-1(Hardcover) ISBN978-0-429-32849-7(eBook) Contents Preface xv PART I ADVANCED CEMENT-BASED COMPOSITES 1 Nanoinclusions for Cementitious Materials 3 AntonellaD’Alessandro 1.1 Introduction 4 1.2 DispersionofNanoinclusionsinaCementitious Matrix 4 1.3 NanoinclusionsforCement-BasedMaterials 6 1.3.1 Carbon-BasedInclusions 7 1.3.1.1 Carbonnanotubes 8 1.3.1.2 Carbonnanofibers 9 1.3.1.3 Graphenenanoplatelets 9 1.3.1.4 Carbonblack 10 1.3.1.5 Grapheneoxide 11 1.3.2 MetallicNanoinclusions 12 1.3.2.1 Nano-TiO 12 2 1.3.2.2 Nano-Fe O 12 2 3 1.3.2.3 Silvernanoparticles 12 1.3.2.4 Nano-Al O 13 2 3 1.3.2.5 Nano-ZnO 13 1.3.2.6 Nano-ZrO 13 2 1.3.2.7 Nano-MgO 14 1.3.3 NoncarbonNanoinclusions 14 1.3.3.1 Nano-SiO 14 2 1.3.3.2 Nano-CaCO 15 2 1.3.3.3 Nanoclay 15 1.3.3.4 Cementnanoparticles 15 vi Contents 1.4 SafetyofNanomaterials 16 1.5 DiscussionandConclusion 17 2 Dispersion Techniques of Nanoinclusions in Cement Matrixes 25 Matteo Tiecco 2.1 CarbonNanotubes:ChemicalStructureand Properties 25 2.2 DispersionTechniquesofCarbonNanotubes:Similia Similibus Solvuntur? 27 2.2.1 PhysicalMethodsforCNTDispersion 28 2.2.1.1 Ultrasonicationphysicalmethod 29 2.2.2 ChemicalMethodsforCNTDispersion 31 2.2.2.1 Surfactants:structure,properties, andsolubilizingcapabilities 31 2.3 DispersionofCarbonNanotubesinWaterwith Surfactants:Similia Similibus Solvuntur (withthe HelpofUltrasonication) 34 2.3.1 OptimizationofCNTDispersionwith Surfactants 36 2.3.1.1 Commerciallyavailablesurfactants forCNTdispersions 37 2.3.1.2 IncreasingCNTdispersionwiththe useofproperlydesignedsurfactants 39 3 Use of Styrene Ethylene Butylene Styrene for Accelerated Percolation in Composite Cement–Based Sensors Filled with Carbon Black 49 SimonLaflammeand Filippo Ubertini 3.1 Introduction 49 3.2 SEBS-CBSensors 52 3.2.1 Materials 52 3.2.2 SensorFabrication 52 3.3 Methodology 55 3.3.1 MixProportions 55 3.3.2 QualityControl 56 3.3.3 Measurements 57 3.3.4 ElectromechanicalModel 58 3.4 ResultsandDiscussion 59 3.4.1 PercolationThresholds 59 Contents vii 3.4.2 StrainSensitivity 60 3.5 Conclusion 62 4 Advancements in Silica Aerogel–Based Mortars 67 Anto´nioSoares,IneˆsFlores-Colen,andJorgedeBrito 4.1 Introduction 68 4.1.1 Nanomaterials 71 4.2 Silica-BasedAerogel 75 4.3 Aerogel-BasedMortars 81 4.4 PerformanceofAerogel-BasedMortars 84 4.5 Conclusions 87 5 Multifunctional Cement-Based Carbon Nanocomposites 101 LiqingZhang,SiqiDing,SufenDong,XunYu,andBaoguoHan 5.1 Introduction 101 5.2 DesignandManufactureofMultifunctional Cement-BasedCarbonNanocomposites 104 5.3 BehaviorsofMultifunctionalCement-BasedCarbon Nanocomposites 105 5.3.1 MechanicalBehaviors 105 5.3.2 ElectricallyConductiveBehavior 107 5.3.3 SensingBehavior 109 5.3.4 DampingBehavior 110 5.3.5 ElectromagneticShielding/Absorbing Behaviors 111 5.3.6 Self-HeatingBehavior 112 5.3.7 Durability 113 5.4 Conclusions 114 6 Analysis and Modeling of Electromechanical Properties of Cement-Based Nanocomposites 123 SiqiDing,LiqingZhang,XunYu,YiqingNi,andBaoguoHan 6.1 Introduction 123 6.2 ElectricallyConductiveandElectromechanical Mechanisms 125 6.2.1 BasicPrinciplesofElectricalConduction 125 6.2.1.1 Contactingconduction 125 6.2.1.2 Tunnelingconductionand/orfield emissionconduction 126 viii Contents 6.2.1.3 Ionicconduction 126 6.2.2 ElectricallyConductiveMechanisms 127 6.2.3 ElectromechanicalMechanisms 129 6.3 AnalysisofElectromechanicalProperties 131 6.3.1 ElectricalResistivity 131 6.3.2 ImpedanceorElectricalReactance 133 6.3.3 ElectricCapacitance 134 6.3.4 ElectricalImpedanceTomography 134 6.4 ModelingofElectromechanicalProperties 134 6.4.1 ModelBasedonTunnelingConduction 135 6.4.2 ModelBasedonFieldEmissionConduction 135 6.4.3 ModelBasedonaLumpedCircuit 137 6.5 Conclusion 139 7 Evaluation of Mechanical Properties of Cement-Based Composites with Nanomaterials 145 PedrodeAlmeidaCar´ısio,OscarAurelioMendozaReales, andRomildoDiasToledoFilho 7.1 Introduction 146 7.2 Nanosilica 149 7.3 Nanotitania 150 7.4 Nanoalumina 151 7.5 Nano–IronOxide 153 7.6 Nanoclay 154 7.7 NanocarbonMaterials 155 7.7.1 GrapheneNanoplatelets 156 7.7.2 CarbonNanofibers 156 7.7.3 CarbonNanotubes 157 7.8 OtherNanoparticles 159 7.9 FuturePerspective 160 8 Micromechanics Modeling of Nanomodified Cement-Based Composites: Carbon Nanotubes 173 EnriqueGarc´ıa-Mac´ıas,RafaelCastro-Triguero,and Andre´sSa´ ez 8.1 IntroductionandSynopsis 173 8.2 MicromechanicsModelingoftheMechanical PropertiesofNanomodifiedComposites 175 Contents ix 8.2.1 FundamentalsofMean-FieldHomogenization 175 8.2.2 Eshelby’sEquivalentInclusion 180 8.2.3 TheMori–TanakaApproach 183 8.2.4 Self-ConsistentEffective-MediumApproach 183 8.2.5 ExtendedEshelby–Mori–TanakaApproaches 184 8.2.6 ModelingofCNTWaviness 185 8.2.7 ModelingofCNTAgglomeration 189 8.3 MicromechanicsModelingoftheElectricalProperties ofCNT-ReinforcedComposites 191 8.3.1 PhysicalMechanismsGoverningtheElectrical ConductivityofCNT-ReinforcedComposites 192 8.3.1.1 Tunnelingresistance:thicknessand conductivityoftheinterface 193 8.3.1.2 Nanoscalecompositecylindermodel forCNTs 194 8.3.2 PercolationThresholdEstimates 195 8.3.3 MicromechanicsModelfortheOverall ConductivityofCNT-ReinforcedComposites 199 8.3.3.1 Wavinessandagglomerationeffects 202 8.3.4 MicromechanicsModelforthePiezoresistivity ofCNT-ReinforcedComposites 203 8.3.4.1 Volumeexpansionandreorientation ofCNTs 203 8.3.4.2 Changeintheconductivenetworks 205 8.3.4.3 Changeinthetunnelingresistance 206 8.4 Summary 209 9 Use of Carbon Cement–Based Sensors for Dynamic Monitoring of Structures 215 AndreaMeoni,AntonellaD’Alessandro,FilippoUbertini,and Annibale Luigi Materazzi 9.1 Introduction 215 9.2 StateoftheArtofNanomodifiedStructures 216 9.3 Cement-BasedSensorsforStructuralHealth Monitoring 217 9.4 StructureswithEmbeddedCement-BasedSensors 225 9.5 StructuresMadeofNanomodifiedCement-Based Materials 230