MSC THESIS Optimized Structural Design of Plug & Play Core© Modular Stadia during preliminary design. Djordy van Laar (1360868) Delft University of Technology Master Building Engineering; Structural Design August, 2015 1 Student information Djordy van Laar TU Delft, CITG (T) +31 (0)6 450 10 123 (E) [email protected] Graduation Committee prof. ir. Rob Nijsse TU Delft, CITG (T) +31 (0)15 278 5488 (E) [email protected] Karel Terwel, PhD MSc TU Delft, CITG (T) +31 (0)15 278 1512 (E) [email protected] dr. ir. Fred Veer TU Delft, Architecture (T) +31 (0)15 278 1358 (E) [email protected] ir. Joep Tünnissen Ballast Nedam Engineering (T) +31 (0)30 285 3920 (E) [email protected] Final grade: 7.5/10 © Copyright 2015 Djordy van Laar, Delft University of Technology, the Netherlands. All rights reserved. Unauthorized use, distribution or duplication is prohibited. Authorization is granted to reproduce for personal or educational purposes, provided that proper citation is used. 2 3 Preface This thesis is the last step towards my Master of Building Engineering degree at the University of Technology in Delft, the Netherlands. The research is conducted in cooperation with the TU Delft and Ballast Nedam. Since the start in October 2014, I truly enjoyed researching modular stadia. I still cannot think of a better graduation topic. Let me explain why. In search of a thesis subject I started with a blank piece of paper. On the paper I wrote a couple of building engineering related topics that eventually led me to the choice of a final thesis subject. LEGOlization (Ridder, H. de, 2011); biomimetics; and sports arenas were on the list. I added sports arenas to the list because of my passion for sports in general and my admiration of stadium structures. In my holidays I always include a visit to a stadium nearby, often with a complete stadium tour. Back to the choice of my thesis subject, I wasn’t expecting a sports arenas related graduation topic, because at that time I thought no Dutch construction company would offer such a ‘’cool’ subject. It was Rob Nijsse who pointed me towards modular stadia construction and after a search on the internet I found out that Ballast Nedam had developed Plug & Play Core. After only one appointment with Joep Tünnissen, the inventor of Plug & Play Core, we settled my graduation internship and I couldn’t be happier. In retrospect, the optimization of the Plug & Play Core modular stadia design process fits seamlessly into this framework that I had created for my graduation topic. The book LEGOlization tells that a future structure (let’s say a stadium) has the same DNA (structural core) as another stadium, but the architectural form is depending on location, use and time. This is exactly what Plug & Play Core stands for. Furthermore, I am always interested in the application of new concepts to the construction industry. Simply because I believe that the construction industry can learn from other industries, even from nature, which is why I added biomimetics to my initial list. My gratitude goes out to Joep Tünnissen in particular, who supervised me on account of Ballast Nedam, and gave me access to all information regarding his Plug & Play Core design. I’d like to thank Fred Veer for his (weekly) guidance, comments and knowledge on material engineering & design processes. I truly appreciate the detailed and accurate comments on my writing from Karel Terwel. My gratitude goes out to Rob Nijsse, for supervising my MSc thesis and for pointing me towards my graduation topic. Lastly, I’d like to thank Gijs, Rick, Mark, Gerard and Rino for all their help during my thesis and their contribution to a great work environment at Ballast Nedam. Djordy van Laar, August 2015 4 Abstract Modular construction is the on-site assembly (installation and connection) of factory made units (Lawson et al., 2014). It allows fabrication of structural components to be moved from the building site to controlled environments. Ballast Nedam adopted modular construction as a key business strategy for the future (Ballast Nedam, 2014). Plug & Play Core is the modular and reusable structural core of a stadium. After realization, the inner core of the stadium can be easily disassembled, transported to another location and reused. Various stadium layouts can be realized, making the concept easily adaptable to the (varying) demands of the client/architect. The Plug & Play Core structural design needs to be easily adaptable to changing (tender) demands. At the same time the design process needs to be quick(er), resulting in more time for actual integral design. The design itself should primarily comply with safety codes, while the financial consequences of structural design decisions on other integral design aspects should be clear. An optimized design process in the form of a structural design tool is proposed to solve these challenges. The design tool should integrate FEM software for structural verification. First a literature search is performed to obtain necessary background information. After, a short summary of key design aspects regarding Plug & Play Core is presented. Then the design tool called Toolbox is explained in the form of a design manual. The main part of the report is ended with a case study of a demountable upper tier for the FIFA WC2022 Al-Wakrah stadium in Qatar. In that chapter the Toolbox design tool is applied to real project data. It is found that the integral design process of Plug & Play Core modular stadia can be optimized by the use of a design tool like the Toolbox. Early-stage consideration of full life-cycle design aspects via a cost analysis in combination with standardized structural analysis, makes the design process quick(er) and allows the designer to generate various design alternatives in a relatively short amount of time. This results in more time for integral optimization of the design. The case study insinuates that cost savings could be achieved by application of the Toolbox, making Plug & Play Core modular stadia more appealing regarding traditional construction alternatives. 5 0 Table of contents Preface ......................................................................................................................... 4 Abstract ....................................................................................................................... 5 1 Introduction ........................................................................................................ 10 1.1 Rationale ...................................................................................................... 11 1.2 Problem definition ......................................................................................... 14 1.3 Research question ......................................................................................... 14 1.4 Aim and objectives ........................................................................................ 14 1.5 Scope and limitations .................................................................................... 15 1.5.1 Scope ....................................................................................................................... 15 1.5.2 Early-stage design .................................................................................................... 16 1.5.3 Case study ............................................................................................................... 16 1.5.4 Elements .................................................................................................................. 16 1.5.5 Connections ............................................................................................................. 16 1.5.6 Integral design ......................................................................................................... 17 1.5.7 Finite element modeling (FEM) ............................................................................... 17 1.5.8 Results ..................................................................................................................... 17 1.6 Methodology ................................................................................................. 17 2 Literature search ................................................................................................. 21 2.1 Design process .............................................................................................. 22 2.2 Integral design aspects .................................................................................. 23 2.2.1 Structural safety ...................................................................................................... 24 2.2.2 Assembly ................................................................................................................. 24 2.2.3 Disassembly ............................................................................................................. 25 2.2.4 Manufacturability .................................................................................................... 26 2.2.5 Aesthetics ................................................................................................................ 26 2.2.6 Costs ........................................................................................................................ 27 2.3 Material selection .......................................................................................... 27 2.4 Design comparison and optimization ............................................................. 29 2.4.1 Comparison ............................................................................................................. 29 2.4.2 Optimization ............................................................................................................ 29 3 Plug & Play Core module design ........................................................................... 32 3.1 Plug & Play Core concept .............................................................................. 33 6 3.1.1 General .................................................................................................................... 33 3.1.2 Design ...................................................................................................................... 33 3.1.3 Manufacturing ......................................................................................................... 34 3.1.4 Transportation ......................................................................................................... 34 3.1.5 Construction ............................................................................................................ 34 3.1.6 Use ........................................................................................................................... 35 3.1.7 Reuse ....................................................................................................................... 35 3.1.8 Prototype ................................................................................................................. 36 4 Structural design tool: Toolbox ................................................................................. 37 4.1 Introduction .................................................................................................. 38 4.2 Background .................................................................................................. 39 4.3 Input parameters .......................................................................................... 39 4.3.1 Geometry................................................................................................................. 39 4.3.2 Material properties ................................................................................................. 41 4.3.3 Loads ....................................................................................................................... 42 4.3.3.1 Ultimate limit states (ULS) .................................................................. 43 4.3.3.2 Serviceability limit states (SLS) ............................................................ 43 4.3.3.3 Partial factors for ULS and SLS ........................................................... 43 4.3.4 Design boundaries ................................................................................................... 44 4.3.5 Remaining input ...................................................................................................... 47 4.4 Section database ........................................................................................... 49 4.5 Toolbox S-M-L ............................................................................................... 52 4.6 Toolbox overview ........................................................................................... 53 4.7 Finite element model and analysis ................................................................. 55 4.7.1 Software .................................................................................................................. 55 4.7.2 Input ........................................................................................................................ 56 4.8 Structural verification ................................................................................... 59 4.9 Cost analysis ................................................................................................ 60 4.9.1 Assumptions ............................................................................................................ 60 4.9.2 Material ................................................................................................................... 61 4.9.3 Fabrication ............................................................................................................... 61 4.9.4 Finishing................................................................................................................... 62 4.9.5 Assembly ................................................................................................................. 62 5 Case study: Al-Wakrah tender design ................................................................... 63 5.1 Al-Wakrah demountable upper tier design ..................................................... 65 5.1.1 Steel support structure ........................................................................................... 65 5.1.2 Steel production site ............................................................................................... 65 5.1.3 Assembly ................................................................................................................. 65 7 5.1.4 Planning ................................................................................................................... 67 5.1.5 Disassembly ............................................................................................................. 67 5.1.6 Use ........................................................................................................................... 68 5.2 Structural design .......................................................................................... 68 5.2.1 Input parameters ..................................................................................................... 69 5.2.1.1 Spans ................................................................................................. 69 5.2.1.2 Material properties .............................................................................. 70 5.2.1.3 Loads ................................................................................................. 70 5.2.1.4 Design boundaries .............................................................................. 71 5.2.1.5 Others ................................................................................................ 71 5.2.2 Toolboxes ................................................................................................................ 72 5.2.2.1 Toolbox Small (L=6m.) ......................................................................... 72 5.2.2.2 Toolbox Medium (L=8m.) ..................................................................... 72 5.2.2.3 Toolbox Large (L=10m.) ....................................................................... 73 5.2.2.4 General conclusions ............................................................................ 73 5.2.3 Toolbox overview .................................................................................................... 74 5.2.4 Finite element model and analysis .......................................................................... 76 5.2.5 Structural verification .............................................................................................. 77 5.2.5.1 HEB500 beams ................................................................................... 77 5.2.5.2 Truss CHS273x10 beams .................................................................... 78 5.2.6 Structural improvement .......................................................................................... 79 5.2.7 Cost analysis ............................................................................................................ 80 5.2.8 Summary of results ................................................................................................. 82 5.2.9 Preliminary design ................................................................................................... 83 6 Conclusions and recommendations ...................................................................... 85 6.1 Research question ......................................................................................... 85 6.2 Conclusions .................................................................................................. 85 6.3 Recommendations ......................................................................................... 87 Reference list .............................................................................................................. 89 List of figures.............................................................................................................. 92 List of tables ............................................................................................................... 93 8 Appendices ................................................................................................................. 94 Appendix A: Material candidates ................................................................................. 95 Appendix B: Transportation constraints ...................................................................... 96 Appendix C: derivation of natural frequency formula ................................................... 97 Appendix D: benchmark tests ..................................................................................... 99 Appendix E: ANSYS command files ........................................................................... 100 Appendix F: Load combinations ................................................................................ 110 Appendix G: Toolbox spreadsheets ............................................................................ 111 Appendix H: Al-Wakrah Cost Analysis ....................................................................... 114 Appendix I: The future of Plug & Play Core ................................................................ 119 9
Description: