ebook img

Modern Water Resources Engineering PDF

879 Pages·2014·23.297 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modern Water Resources Engineering

Handbook of Environmental Engineering 15 Lawrence K. Wang Chih Ted Yang Editors Modern Water Resources Engineering Modern Water Resources Engineering For furthervolumes: http://www.springer.com/series/7645 V 15 OLUME H E E ANDBOOK OF NVIRONMENTAL NGINEERING Modern Water Resources Engineering Edited by Lawrence K. Wang, Ph.D., P.E., D.EE Ex-Dean & Director Zorex Corporation, Newtonville, New York, USA Lenox Institute of Water Technology, Newtonville, NY, USA Krofta Engineering Corporation, Lenox, Massachusetts, USA Chih Ted Yang, Ph.D., P.E., D.WRE Borland Professor of Water Resources Department of Civil and Environmental Engineering Colorado State University, Fort Collins, Colorado, USA Editors LawrenceK.Wang,Ph.D.,P.E.,D.EE Ex-Dean&Director ZorexCorporation,Newtonville,NewYork,USA LenoxInstituteofWaterTechnology,Newtonville,NY,USA KroftaEngineeringCorporation,Lenox,Massachusetts,USA [email protected] ChihTedYang,Ph.D.,P.E.,D.WRE BorlandProfessorofWaterResources DepartmentofCivilandEnvironmentalEngineering ColoradoStateUniversity,FortCollins,Colorado,USA [email protected] [email protected] ISBN978-1-62703-594-1 ISBN978-1-62703-595-8(eBook) DOI10.1007/978-1-62703-595-8 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2013955598 ©SpringerScience+BusinessMediaNewYork2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthematerialisconcerned, specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting,reproductiononmicrofilmsorin anyotherphysicalway,andtransmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orby similarordissimilarmethodologynowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsin connectionwithreviewsorscholarlyanalysisormaterialsuppliedspecificallyforthepurposeofbeingenteredandexecutedona computersystem,forexclusiveusebythepurchaserofthework.Duplicationofthispublicationorpartsthereofispermittedonly undertheprovisionsoftheCopyrightLawofthePublisher’slocation,initscurrentversion,andpermissionforusemustalways be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoesnotimply,evenin theabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulationsandtherefore freeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpublication,neithertheauthors northeeditorsnorthepublishercanacceptanylegalresponsibilityforanyerrorsoromissionsthatmaybemade.Thepublisher makesnowarranty,expressorimplied,withrespecttothematerialcontainedherein. Printedonacid-freepaper HumanaPressisabrandofSpringer SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface The past 35 years have seen the emergence of a growing desire worldwide that positive actionsbetakentorestoreandprotecttheenvironmentfromthedegradingeffectsofallforms of pollution—air, water, soil, thermal, radioactive, and noise. Since pollution is a direct or indirect consequence of waste, the seemingly idealistic demand for “zero discharge” can be construed as an unrealistic demand for zero waste. However, as long as waste continues to exist,wecanonlyattempttoabatethesubsequentpollutionbyconvertingittoalessnoxious form. Three major questions usually arise when a particular type of pollution has been identified: (1) How serious are the environmental pollution and water resources crisis? (2) Is the technology to abate them available? and (3) Do the costs of abatement justify the degree of abatement achieved for environmental protection and water conservation? This book is one of the volumes of the Handbook of Environmental Engineering series. The principal intention of this series is to help readers formulate answers to the above three questions. Thetraditionalapproachofapplyingtried-and-truesolutionstospecificenvironmentaland waterresourcesproblemshasbeenamajorcontributingfactortothesuccessofenvironmental engineering,andhasaccountedin largemeasurefortheestablishmentofa“methodologyof pollution control.” However, the realization of the ever-increasing complexity and interre- latednatureofcurrentenvironmentalproblemsrendersitimperativethatintelligentplanning of pollution abatement systems be undertaken. Prerequisite to such planning is an under- standing of the performance, potential, and limitations of the various methods of environ- mental protection available for environmental scientists and engineers. In this series of handbooks, we will review at a tutorial level a broad spectrum of engineering systems (processes, operations, and methods) currently being utilized, or of potential utility, for pollution abatement. We believe that the unified interdisciplinary approach presented in these handbooks is a logical step in the evolution of environmental engineering. Treatment of the various engineering systems presented will show how an engineering formulation of the subject flows naturally from the fundamental principles and theories of chemistry, microbiology, physics, and mathematics. This emphasis on fundamental science recognizes that engineering practice has in recent years become more firmly based on scientific principles rather than on its earlier dependency on empirical accumulation of facts. It is not intended, though, to neglect empiricism where such data lead quickly to the mosteconomicdesign;certainengineeringsystemsarenotreadilyamenabletofundamental scientificanalysis,andintheseinstanceswehaveresortedtolessscienceinfavorofmoreart and empiricism. Sinceanenvironmentalengineermustunderstandsciencewithinthecontextofapplications, we first present the development of the scientific basis of a particular subject, followed by exposition of the pertinent design concepts and operations, and detailed explanations of their applications to environmental conservation or protection. Throughout the series, methods of system analysis, practical design, and calculation are illustrated by numerical examples. v vi Preface These examples clearly demonstrate how organized, analytical reasoning leads to the most directandclearsolutions.Whereverpossible,pertinentcostdatahavebeenprovided. Ourtreatmentofenvironmentalengineeringisofferedinthebeliefthatthetrainedengineer should more firmly understand fundamental principles, be more aware of the similarities and/or differences among many of the engineering systems, and exhibit greater flexibility and originality in the definition and innovative solution of environmental system problems. In short, an environmental engineer should by conviction and practice be more readily adaptable to change and progress. Coverage of the unusually broad field of environmental engineering has demanded an expertisethatcouldbeprovidedonlythroughmultipleauthorships.Eachauthor(orgroupof authors) was permitted to employ, within reasonable limits, the customary personal style in organizingandpresentingaparticularsubjectarea;consequently,ithasbeendifficulttotreat all subject materials in a homogeneous manner. Moreover, owing to limitations of space, some of the authors’ favored topics could not be treated in great detail, and many less important topics had to be merely mentioned or commented on briefly. All authors have provided an excellent list of references at the end of each chapter for the benefit of the interestedreaders.Aseachchapterismeanttobeself-contained,somemildrepetitionamong the various texts was unavoidable. In each case, all omissions or repetitions are the respon- sibility of the editors and not the individual authors. With the current trend toward metrica- tion,thequestionofusingaconsistentsystemofunitshasbeenaproblem.Whereverpossible, theauthorshaveusedtheBritishsystem(fps)alongwith themetricequivalent (mks,cgs,or SIU)orviceversa.Theeditorssincerelyhopethatthisredundancyofunits’usagewillprove to be useful rather than being disruptive to the readers. The goals of the Handbook of Environmental Engineering series are: (1) to cover entire environmental fields, including air and noise pollution control, solid waste processing and resource recovery, physicochemical treatment processes, biological treatment processes, biotechnology,biosolidsmanagement,flotationtechnology,membranetechnology,desalina- tion technology, water resources, natural control processes, radioactive waste disposal, hazardouswastemanagement,andthermalpollutioncontrol;and(2)toemployamultimedia approach to environmental conservation and protection since air, water, soil, and energy are all interrelated. ThisbookisVol.15oftheHandbookofEnvironmentalEngineeringseries,whichhasbeen designedto serve as a water resourcesengineeringreference bookas well as asupplemental textbook. We hope and expect it will prove of equal high value to advanced undergraduate and graduate students, to designers of water resources systems, and to scientists and researchers. The editors welcome comments from readers in all of these categories. It is our hopethatthebookwillnotonlyprovideinformationonwaterresourcesengineering,butwill alsoserveasabasisforadvancedstudyorspecializedinvestigationofthetheoryandanalysis of various water resources systems. This book, Modern Water Resources Engineering, covers topics on principles and appli- cationsofhydrology,openchannelhydraulics,riverecology,riverrestoration,sedimentation and sustainable use of reservoirs, sediment transport, river morphology, hydraulic Preface vii engineering,GIS,remotesensing,decision-makingprocessunderuncertainty,uplanderosion modeling, machine learning method, climate change and its impact on water resources, land application, crop management, watershed protection, wetland for waste disposal, water conservation, living machines, bioremediation, wastewater treatment, aquaculture system management, environmental protection models, and glossary for water resources engineers. Theeditorsarepleasedtoacknowledgetheencouragementandsupportreceivedfromtheir colleaguesandthepublisherduringtheconceptualstagesofthisendeavor.Wewishtothank the contributing authorsfor their time and effort, and for havingpatiently borne our reviews andnumerousqueriesandcomments.Weareverygratefultoourrespectivefamiliesfortheir patience and understanding during some rather trying times. Lawrence K. Wang Newtonville, New York, USA Chih Ted Yang Fort Collins, Colorado, USA Contents Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Contributors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix 1. Introduction to Hydrology Jose D. Salas, Rao S. Govindaraju,Michael Anderson, MazdakArabi, Fe´lix France´s, Wilson Suarez, Waldo S. Lavado-Casimiro, and Timothy R. Green. . . . . . . . . . . . . . . . . . . . . 1 1. Introduction. . .. . . .. . . .. . . .. . .. . . .. . . .. . . .. . . .. . .. . . .. . . .. . . .. . .. . . .. . . .. 2 2. Hydroclimatology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1. TheHydroclimaticSystem................................................. 4 2.2. HydroclimaticSystemPatterns:AtmosphericPatterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3. HydroclimaticSystemPatterns:CoupledAtmosphere-OceanPatterns. . . . . . . . . . . . . . . . . . . . . 5 2.4. HydroclimaticSystemPatterns:OceanSystemPatterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.5. InteractionsAcrossScalesandExtremeEvents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.6. ClimateChange. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.7. Remarks. . .. . . . .. . . . .. . . . .. . . . .. . . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. 8 3. SurfaceWaterHydrology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1. Precipitation. .................... .................... ................. 9 3.2. InterceptionandDepressionStorage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3. Infiltration. .. .. . .. .. .. . .. .. .. . .. .. .. . .. .. .. . .. .. .. . .. .. .. . .. .. .. . .. .. 13 3.4. EvaporationandEvapotranspiration... .............. .............. ............ 17 3.5. Runoff. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4. SoilMoistureHydrology. .. .. .. .. ... .. .. .. .. .. ... .. .. .. .. .. ... .. .. .. .. ... .. .. 34 4.1. BasicConceptsandDefinitions.............................................. 34 4.2. SoilMoistureRecycling. . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . 37 4.3. VariabilityofSoilMoisture.. .. .. .. . .. .. .. .. .. .. .. .. .. .. .. .. . .. .. .. .. .. .. .. 37 4.4. ScalingofSoilMoisture. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . 38 5. HydrologyofGlaciers....................................................... 40 5.1. BasicConceptsandDefinitions.............................................. 41 5.2. GlacialandSnowFusionMethods............................................ 42 5.3. GlacierEquipment.... ................. ................ ................. 45 6. WatershedandRiverBasinModeling...... ....... ...... ...... ....... ...... ....... 45 6.1. BasicConceptsandDefinitions.............................................. 47 6.2. BriefExample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.3. ModelCalibrationandTesting. .. . . . .. . . . .. . . . .. . . .. . . . .. . . . .. . . . .. . . .. . . . .. 55 6.4. SensitivityAnalysis. .. . .. .. . .. .. . .. .. . .. .. . .. .. . .. .. . .. .. . .. .. . .. .. . .. .. 57 6.5. UncertaintyAnalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 7. RiskandUncertaintyAnalysesinHydrology. . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. 61 7.1. Introduction.. .. .. .. ... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. 61 7.2. FrequencyAnalysisofHydrologicData. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 7.3. StochasticMethodsinHydrologyandWaterResources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 7.4. Nonstationarity. .. ... .. .. .. ... .. .. ... .. .. .. ... .. .. .. ... .. .. ... .. .. .. ... 93 8. AdvancesinHydrologicDataAcquisitionandInformationSystems. . . . . . . . . . . . . . . . . . . . . . . . . 94 8.1. SatellitePrecipitationEstimation............................................. 94 8.2. SpaceborneMethodsforEstimatingSurfaceWaters:Rivers,Wetlands,andLakes. . . . . . . . . . . . . 96 8.3. SpaceborneMethodsforEstimatingSoilMoisture,Evaporation,Vegetation, Snow,Glaciers,andGroundwater. . . .. . . . . . .. . . . . .. . . . . . .. . . . . .. . . . . . .. . . . . .. 98 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.