ebook img

Microwave and Millimeter Wave Circuits and Systems: Emerging Design, Technologies, and Applications PDF

559 Pages·2012·10.82 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Microwave and Millimeter Wave Circuits and Systems: Emerging Design, Technologies, and Applications

MICROWAVE AND MILLIMETER WAVE CIRCUITS AND SYSTEMS MICROWAVE AND MILLIMETER WAVE CIRCUITS AND SYSTEMS EMERGING DESIGN, TECHNOLOGIES, AND APPLICATIONS Editors ApostolosGeorgiadis CTTC,Spain HendrikRogier GhentUniversity,Belgium LucaRoselli UniversityofPerugia,Italy PaoloArcioni UniversityofPavia,Italy Thiseditionfirstpublished2013 #2013JohnWiley&Sons,Ltd Registeredoffice JohnWiley&Sons,Ltd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UnitedKingdom Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapplyforpermissionto reusethecopyrightmaterialinthisbookpleaseseeourwebsiteatwww.wiley.com. TherightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewiththeCopyright, DesignsandPatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyform orbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbytheUKCopyright, DesignsandPatentsAct1988,withoutthepriorpermissionofthepublisher. COSTlogoshavebeenreproducedbypermissionof#2012COSTOffice.TheEUflagisreproducedcourtesyof #EuropeanUnion,1995-2012(http://europa.eu/geninfo/legal_notices_en.html). Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbeavailablein electronicbooks. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.Allbrandnamesandproduct namesusedinthisbookaretradenames,servicemarks,trademarksorregisteredtrademarksoftheirrespectiveowners.The publisherisnotassociatedwithanyproductorvendormentionedinthisbook.Thispublicationisdesignedtoprovide accurateandauthoritativeinformationinregardtothesubjectmattercovered.Itissoldontheunderstandingthatthe publisherisnotengagedinrenderingprofessionalservices.Ifprofessionaladviceorotherexpertassistanceisrequired,the servicesofacompetentprofessionalshouldbesought. LibraryofCongressCataloging-in-PublicationData Microwaveandmillimeterwavecircuitsandsystems:emergingdesign, technologies,andapplications/editors,ApostolosGeorgiadis...[etal.]. p.cm. Includesbibliographicalreferencesandindex. ISBN978-1-119-94494-2(cloth) 1. Microwavecircuits–EuropeanUnioncountries–Designandconstruction. 2. Electroniccircuit design 3. Millimeterwaves–Research–EuropeanUnioncountries. I. Georgiadis,Apostolos. TK7876.M52252012 621.381032–dc23 2012015786 AcataloguerecordforthisbookisavailablefromtheBritishLibrary. ISBN:9781119944942 Setin10/12ptTimesbyThomsonDigital,Noida,India. Contents AbouttheEditors xiii AbouttheAuthors xvii Preface xxxi ListofAbbreviations xli ListofSymbols xlv PartI DESIGNANDMODELINGTRENDS 1 LowCoefficientAccurateNonlinearMicrowaveandMillimeterWave NonlinearTransmitterPowerAmplifierBehaviouralModels 3 1.1 Introduction 3 1.1.1 ChapterStructure 4 1.1.2 LDMOSPAMeasurements 4 1.1.3 BFModel 7 1.1.4 ModifiedBFModel(MBF)–Derivation 8 1.1.5 MBFModelsofanLDMOSPA 13 1.1.6 MBFModel–AccuracyandPerformanceComparisons 15 1.1.7 MBFModel–theMemorylessPABehaviouralModelofChoice 22 Acknowledgements 24 References 24 2 ArtificialNeuralNetworkinMicrowaveCavityFilterTuning 27 2.1 Introduction 27 2.2 ArtificialNeuralNetworksFilterTuning 28 2.2.1 TheInverseModeloftheFilter 29 2.2.2 SequentialMethod 30 2.2.3 ParallelMethod 31 2.2.4 DiscussionontheANN’sInputData 33 2.3 PracticalImplementation–TuningExperiments 36 2.3.1 SequentialMethod 36 2.3.2 ParallelMethod 41 vi Contents 2.4 InfluenceoftheFilterCharacteristicDomainonAlgorithmEfficiency 43 2.5 RobotsintheMicrowaveFilterTuning 47 2.6 Conclusions 49 Acknowledgement 49 References 49 3 WidebandDirectiveAntennaswithHighImpedanceSurfaces 51 3.1 Introduction 51 3.2 HighImpedanceSurfaces(HIS)UsedasanArtificialMagneticConductor (AMC)forAntennaApplications 52 3.2.1 AMCCharacterization 52 3.2.2 AntennaoverAMC:Principle 55 3.2.3 AMC’sWidebandIssues 55 3.3 WidebandDirectiveAntennaUsingAMCwithaLumpedElement 57 3.3.1 Bow-TieAntennainFreeSpace 57 3.3.2 AMCReflectorDesign 59 3.3.3 PerformancesoftheBow-TieAntennaoverAMC 60 3.3.4 AMCOptimization 61 3.4 WidebandDirectiveAntennaUsingaHybridAMC 64 3.4.1 PerformancesofaDiamondDipoleAntennaovertheAMC 65 3.4.2 BeamSplittingIdentificationandCancellationMethod 69 3.4.3 PerformanceswiththeHybridAMC 73 3.5 Conclusion 78 Acknowledgments 80 References 80 4 CharacterizationofSoftware-DefinedandCognitiveRadioFront-Endsfor MultimodeOperation 83 4.1 Introduction 83 4.2 MultibandMultimodeReceiverArchitectures 84 4.3 WidebandNonlinearBehavioralModeling 87 4.3.1 DetailsoftheBPSRArchitecture 87 4.3.2 ProposedWidebandBehavioralModel 89 4.3.3 ParameterExtractionProcedure 92 4.4 ModelValidationwithaQPSKSignal 95 4.4.1 FrequencyDomainResults 95 4.4.2 SymbolEvaluationResults 98 References 99 5 ImpactandDigitalSuppressionofOscillatorPhaseNoiseinRadio Communications 103 5.1 Introduction 103 5.2 PhaseNoiseModelling 104 5.2.1 Free-RunningOscillator 104 5.2.2 Phase-LockedLoopOscillator 105 5.2.3 GeneralizedOscillator 107 Contents vii 5.3 OFDMRadioLinkModellingandPerformanceunderPhaseNoise 109 5.3.1 EffectofPhaseNoiseinDirect-ConversionReceivers 110 5.3.2 EffectofPhaseNoiseandtheSignalModelonOFDM 110 5.3.3 OFDMLinkSINRAnalysisunderPhaseNoise 113 5.3.4 OFDMLinkCapacityAnalysisunderPhaseNoise 114 5.4 DigitalPhaseNoiseSuppression 118 5.4.1 StateoftheArtinPhaseNoiseEstimationandMitigation 119 5.4.2 RecentContributionstoPhaseNoiseEstimationand Mitigation 122 5.4.3 PerformanceoftheAlgorithms 128 5.5 Conclusions 129 Acknowledgements 131 References 131 6 APragmaticApproachtoCooperativePositioninginWireless SensorNetworks 135 6.1 Introduction 135 6.2 LocalizationinWirelessSensorNetworks 136 6.2.1 Range-FreeMethods 136 6.2.2 Range-BasedMethods 139 6.2.3 CooperativeversusNoncooperative 142 6.3 CooperativePositioning 142 6.3.1 CentralizedAlgorithms 143 6.3.2 DistributedAlgorithms 144 6.4 RSS-BasedCooperativePositioning 147 6.4.1 MeasurementPhase 147 6.4.2 LocationUpdatePhase 148 6.5 NodeSelection 150 6.5.1 EnergyConsumptionModel 152 6.5.2 NodeSelectionMechanisms 153 6.5.3 JointNodeSelectionandPathLossExponentEstimation 156 6.6 NumericalResults 160 6.6.1 OLPL-NS-LSPerformance 164 6.6.2 ComparisonwithExistingMethods 164 6.7 ExperimentalResults 166 6.7.1 Scenario1 166 6.7.2 Scenario2 169 6.8 Conclusions 169 References 170 7 ModellingofSubstrateNoiseandMitigationSchemesforUWBSystems 173 7.1 Introduction 173 7.1.1 UltraWidebandSystems–DevelopmentsandChallenges 174 7.1.2 SwitchingNoise–OriginandCouplingMechanisms 175 7.2 ImpactEvaluationofSubstrateNoise 176 7.2.1 ExperimentalImpactEvaluationonaUWBLNA 177 viii Contents 7.2.2 ResultsandDiscussion 178 7.2.3 Conclusion 181 7.3 AnalyticalModellingofSwitchingNoiseinLightlyDopedSubstrate 182 7.3.1 Introduction 182 7.3.2 TheGAPModel 185 7.3.3 TheStatisticModel 192 7.3.4 Conclusion 195 7.4 SubstrateNoiseSuppressionandIsolationforUWBSystems 195 7.4.1 Introduction 195 7.4.2 ActiveSuppressionofSwitchingNoiseinMixed-Signal IntegratedCircuits 196 7.5 Summary 204 References 205 PartII APPLICATIONS 8 Short-RangeTrackingofMovingTargetsbyaHandheldUWB RadarSystem 209 8.1 Introduction 209 8.2 HandheldUWBRadarSystem 210 8.3 UWBRadarSignalProcessing 210 8.3.1 RawRadarDataPreprocessing 211 8.3.2 BackgroundSubtraction 212 8.3.3 WeakSignalEnhancement 213 8.3.4 TargetDetection 214 8.3.5 Time-of-ArrivalEstimation 215 8.3.6 TargetLocalization 217 8.3.7 TargetTracking 217 8.4 Short-RangeTrackingIllustration 218 8.5 Conclusions 223 Acknowledgement 224 References 224 9 AdvancesintheTheoryandImplementationofGNSSAntenna ArrayReceivers 227 9.1 Introduction 227 9.2 GNSS:Satellite-BasedNavigationSystems 228 9.3 ChallengesintheAcquisitionandTrackingofGNSSSignals 230 9.3.1 Interferences 232 9.3.2 MultipathPropagation 232 9.4 DesignofAntennaArraysforGNSS 233 9.4.1 HardwareComponentsDesign 234 9.4.2 ArraySignalProcessingintheDigitalDomain 239 9.5 ReceiverImplementationTrade-Offs 244 9.5.1 ComputationalResourcesRequired 244 Contents ix 9.5.2 ClockDomainCrossinginFPGAs/SynchronizationIssues 247 9.6 PracticalExamplesofExperimentationSystems 248 9.6.1 L1ArrayReceiverofCTTC,Spain 248 9.6.2 GALANT,aMultifrequencyGPS/GalileoArrayReceiverof DLR,Germany 253 References 272 10 MultibandRFFront-EndsforRadarandCommunicationsApplications 275 10.1 Introduction 275 10.1.1 StandardApproachesforRFFront-Ends 275 10.1.2 AcquisitionofMultibandSignals 276 10.1.3 TheDirect-SamplingArchitecture 277 10.2 MinimumSub-NyquistSampling 278 10.2.1 MathematicalApproach 278 10.2.2 AcquisitionofDual-BandSignals 279 10.2.3 AcquisitionofEvenlySpacedEqual-BandwidthMultibandSignals 282 10.3 SimulationResults 284 10.3.1 SymmetricalandAsymmetricalCases 284 10.3.2 VerificationoftheMathematicalFramework 285 10.4 DesignofSignal-InterferenceMultibandBandpassFilters 287 10.4.1 EvenlySpacedEqual-BandwidthMultibandBandpassFilters 288 10.4.2 Stepped-ImpedanceLineAsymmetricalMultibandBandpass Filters 289 10.5 BuildingandTestingofDirect-SamplingRFFront-Ends 290 10.5.1 Quad-BandBandpassFilter 290 10.5.2 AsymmetricalDual-BandBandpassFilter 291 10.6 Conclusions 293 References 294 11 Mm-WaveBroadbandWirelessSystemsandEnablingMMICTechnologies 295 11.1 Introduction 295 11.2 V-BandStandardsandApplications 297 11.2.1 IEEE802.15.3cStandard 297 11.2.2 ECMA-387Standard 299 11.2.3 WirelessHD 300 11.2.4 WiGigStandard 301 11.3 V-BandSystemArchitectures 302 11.3.1 Super-HeterodyneArchitecture 302 11.3.2 DirectConversionArchitecture 303 11.3.3 BitstoRFandRFtoBitsRadioArchitectures 305 11.4 SiGeV-BandMMIC 306 11.4.1 VoltageControlledOscillator 307 11.4.2 ActiveReceiveBalun 310 11.4.3 On-ChipButlerMatrix 313 11.4.4 HighGBPsSiGeV-BandSPSTSwitchDesignConsiderations 317 x Contents 11.5 Outlook 320 References 322 12 ReconfigurableRFCircuitsandRF-MEMS 325 12.1 Introduction 325 12.2 ReconfigurableRFCircuits–Transistor-BasedSolutions 326 12.2.1 ProgrammableMicrowaveFunctionArrays 326 12.2.2 PROMFAConcept 327 12.2.3 DesignExample:TunableBandPassfilter 331 12.2.4 DesignExamples:BeamformingNetwork,LNAandVCO 333 12.3 ReconfigurableRFCircuitsUsingRF-MEMS 335 12.3.1 IntegrationofRF-MEMSandActiveRFDevices 336 12.3.2 MonolithicIntegrationofRF-MEMSinGaAs/GaN MMICProcesses 337 12.3.3 MonolithicIntegrationofRF-MEMSinSiGeBiCMOSProcess 342 12.3.4 DesignExample:RF-MEMSReconfigurableLNA 344 12.3.5 RF-MEMS-BasedPhaseShiftersforElectronicBeamSteering 348 12.4 Conclusions 353 References 353 13 MIOS:MillimeterWaveRadiometersfortheSpace-BasedObservation oftheSun 357 13.1 Introduction 357 13.2 ScientificBackground 358 13.3 Quiet-SunSpectralFluxDensity 359 13.4 RadiationMechanisminFlares 361 13.5 OpenProblems 361 13.6 SolarFlaresSpectralFluxDensity 363 13.7 SolarFlaresPeakFluxDistribution 364 13.8 AtmosphericVariability 365 13.9 IonosphericVariability 366 13.10 AntennaDesign 369 13.11 AntennaNoiseTemperature 371 13.12 AntennaPointingandRadiometricBackground 373 13.13 InstrumentResolution 373 13.14 SystemOverview 374 13.15 SystemDesign 376 13.16 CalibrationCircuitry 378 13.17 RetrievalEquations 381 13.18 PeriodicityoftheCalibrations 381 13.19 Conclusions 384 References 384 14 ActiveAntennasinSubstrateIntegratedWaveguide(SIW)Technology 387 14.1 Introduction 387 14.2 SubstrateIntegratedWaveguideTechnology 388 Contents xi 14.3 PassiveSIWCavity-BackedAntennas 388 14.3.1 PassiveSIWPatchCavity-BackedAntenna 389 14.3.2 PassiveSIWSlotCavity-BackedAntenna 391 14.4 SIWCavity-BackedAntennaOscillators 395 14.4.1 SIWCavity-BackedPatchAntennaOscillator 395 14.4.2 SIWCavity-BackedSlotAntennaOscillatorwith FrequencyTuning 397 14.4.3 CompactSIWPatchAntennaOscillatorwith FrequencyTuning 401 14.5 SIW-BasedCoupledOscillatorArrays 406 14.5.1 DesignofCoupledOscillatorSystemsforPowerCombining 407 14.5.2 CoupledOscillatorArraywithBeam-ScanningCapabilities 412 14.6 Conclusions 414 References 415 15 ActiveWearableAntennaModules 417 15.1 Introduction 417 15.2 ElectromagneticCharacterizationofFabricsandFlexibleFoamMaterials 419 15.2.1 ElectromagneticPropertyConsiderationsforWearableAntenna Materials 419 15.2.2 CharacterizationTechniquesAppliedtoWearableAntenna Materials 419 15.2.3 Matrix-PencilTwo-LineMethod 420 15.2.4 Small-BandInversePlanarAntennaResonatorMethod 427 15.3 ActiveAntennaModulesforWearableTextileSystems 436 15.3.1 ActiveWearableAntennawithOptimizedNoiseCharacteristics 436 15.3.2 SolarCellIntegrationwithWearableTextileAntennas 445 15.4 Conclusions 451 References 452 16 NovelWearableSensorsforBodyAreaNetworkApplications 455 16.1 BodyAreaNetworks 455 16.1.1 PotentialSheet-ShapedCommunicationSurfaceConfigurations 456 16.1.2 WirelessBodyAreaNetwork 460 16.1.3 ChapterFlowSummary 460 16.2 Designofa2-DArrayFreeAccessMat 460 16.2.1 CouplingofExternalAntennas 462 16.2.2 2-DArrayPerformanceCharacterizationbyMeasurement 464 16.2.3 AccessibleRangeofExternalAntennasonthe2-DArray 467 16.3 Textile-BasedFreeAccessMat:FlexibleInterfaceforBody-Centric WirelessCommunications 467 16.3.1 WearableWaveguide 470 16.3.2 SummaryontheProposedWearableWaveguide 475 16.4 ProposedWBANApplication 476 16.4.1 Concept 476

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.