MICROSTRUCTURAL UNDERSTANDING OF HYDROCOLLOID AND MIXED HYDROCOLLOID SYSTEMS FOR BIOMEDICAL APPLICATIONS Abigail Belinda Norton A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY Department of Chemical Engineering College of Physical and Engineering Sciences The University of Birmingham 2016 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Hydrocolloid materials have been used for some time in the fields of regenerative medicine and drug delivery. Despite a significant body of work, to date the majority of research in the area has focused on relatively simple compositions and microstructures. In comparison, the food industry has long used refined and often subtle methods to structure and thereby tailor the release and handling properties of a vast range of similar materials. In this thesis, a range of processing methodologies has been used to generate novel materials intended for use in the regenerative medicine and drug delivery using gellan and kappa carrageenan. The thesis demonstrates how even small changes in process conditions can result in significant changes in the way a material handles and may deliver therapeutic molecules. It has been demonstrated that gellan, when combined with poly (vinyl alcohol) (PVA) produces a material of enhanced robustness. However, the enhanced robustness was subject to gellan forming the dominant phase. By imparting a shear force to gelling materials, it was also possible to produce shear thinning fluid materials using similar biopolymers (gellan with kappa carrageenan). These polymers typically phase separate, however, when the concentration of polymers were controlled, simultaneous gelation could be achieved suggesting that a single phase system was formed. Finally it was demonstrated that it was possible to generate a novel cell I delivery device by the hydration of kappa carrageenan in warm biomedical buffers, with no high temperatures required. Overall this thesis demonstrates the range and complexity of structures that can be produced using the relatively small number of polymers that can be used in the clinic. II Acknowledgements I would firstly like to thank my supervisors, Professor Liam Grover and Dr. Fotis Spyropoulos for their invaluable guidance, support and mentorship during my research time and the writing of my thesis. I will be always grateful for your constant motivation and belief. Special thanks goes to Lynn Draper, who has been so reassuring and helpful throughout my PhD. I would also like to thank the EPSRC for funding this work. My time in Birmingham has been so gratifying, and I have my friends and colleagues in Chemical Engineering to thank for that. A big thank you also goes to my closest friends outside of the university; you have all been so supportive, and always found ways of taking my mind off the stresses of PhD life. A massive thank you goes to my family for all their love, support and motivation. My sincerest thanks to my parents, who have been so amazing, especially while I have been writing my thesis. You have supported me in everything I do and I hope I will continue to make you proud. Finally but most importantly, to Gary, you have been so patient and loving throughout my PhD. I could not have done this without you! Thank you. III Table of Content Abstract ....................................................................................................................................... I Acknowledgements ............................................................................................................. III Table of Content ................................................................................................................... IV List of Figures ..................................................................................................................... VIII List of Tables ........................................................................................................................ XVI Chapter 1. INTRODUCTION ............................................................................................... 1 1.1 Context of the study ............................................................................................................... 2 1.2 Objectives ................................................................................................................................... 5 1.3 Thesis Structure ...................................................................................................................... 6 1.4 Publications and Presentations ........................................................................................ 7 Chapter 2. LITERATURE REVIEW ................................................................................... 9 2.1 Introduction ............................................................................................................................ 10 2.2 Hydrocolloids ......................................................................................................................... 12 2.2.1 Gellan Gum ...................................................................................................................... 15 2.2.2 Kappa Carrageenan ..................................................................................................... 18 2.2.3 Poly (vinyl alcohol) (PVA) ........................................................................................ 21 2.3 Gelation ..................................................................................................................................... 22 2.3.1 Quiescent gels ................................................................................................................ 22 2.3.2 Fluid gels .......................................................................................................................... 25 2.4 Mixed hydrocolloid systems ............................................................................................ 28 2.5 Hydrocolloids in emulsions .............................................................................................. 33 IV 2.5.1 Emulsion formation .................................................................................................... 33 2.5.2 Role of Hydrocolloids ................................................................................................. 37 Chapter 3. FORMATION AND CHARACTERISATION OF QUIESCENT GELLAN GELS AND MIXED GELLAN/PVA GELS .................................................... 39 3.1 Background .............................................................................................................................. 40 3.2 Materials and methods ....................................................................................................... 41 3.2.1 Materials .......................................................................................................................... 41 3.2.2 Methods ............................................................................................................................ 41 3.2.2.1 Preparation of gellan PVA gels .................................................................................... 41 3.2.2.2 Gellan stained with 5-‐‑(4,6-‐‑Dichlorotriazinyl) Aminofluorescein (DTAF) 42 3.2.2.3 Mechanical Testing ........................................................................................................... 42 3.2.2.4 Rheological Analysis ........................................................................................................ 44 3.2.2.5 Confocal Scanning Laser Microscopy (CSLM) ....................................................... 45 3.3 Results and Discussion ....................................................................................................... 45 3.3.1 Understanding poly (vinyl alcohol) (PVA) modification of gellan gels 45 3.3.2 Visualisation of gellan/PVA microstructures .................................................. 61 3.4 Conclusions .............................................................................................................................. 68 Chapter 4. THE FORMATION AND CHARACTERISATION OF LOW ACYL GELLAN/ KAPPA CARRAGEENAN MIXED FLUID GELS ..................................... 71 4.1 Background .............................................................................................................................. 72 4.2 Materials and Methods ....................................................................................................... 72 4.2.1 Materials .......................................................................................................................... 72 4.2.2 Fluid gel preparation .................................................................................................. 73 4.2.3 Fluid gel characterisation ......................................................................................... 74 4.2.3.1 Rheological characterisation ........................................................................................ 74 4.2.3.2 Differential scanning calorimetry (DSC) ................................................................. 74 V 4.3 Results and discussion ........................................................................................................ 75 4.3.1 Single polymer fluid gels ........................................................................................... 75 4.3.2 Mixed polymer fluid gels .......................................................................................... 85 4.4 Conclusions .............................................................................................................................. 99 Chapter 5. WARM (30 OC) HYDRATION OF POTASSIUM KAPPA CARRAGEENAN AND ITS INCLUSION IN EMULSIONS AND COMPLEX EMULSIONS ......................................................................................................................... 101 5.1 Background ........................................................................................................................... 102 5.2 Materials and Methods .................................................................................................... 103 5.2.1 Materials ....................................................................................................................... 103 5.2.2 Formation of kappa carrageenan samples ..................................................... 104 5.2.2.1 Formation of Kappa carrageenan in water and buffers ................................. 104 5.2.2.2 Formation of primary emulsions .............................................................................. 104 5.2.2.3 Formation of secondary emulsions ......................................................................... 105 5.2.3 Sample measurements ........................................................................................... 105 5.2.3.1 Rheology .............................................................................................................................. 105 5.2.3.2 Differential Scanning Calorimetry (DSC) .............................................................. 106 5.2.3.3 Mastersizer ......................................................................................................................... 106 5.2.3.4 Microscopy ......................................................................................................................... 107 5.3 Results and Discussion .................................................................................................... 107 5.3.1 Hydration and swelling of kappa carrageenan in water and HEPES and DMEM buffer .......................................................................................................................... 107 5.3.2 Inclusion of the kappa carrageenan low temperature hydrated gel networks within a water in oil emulsion ................................................................... 126 5.3.3 Inclusion of kappa carrageenan stabilised primary emulsions for the production of duplex emulsions .................................................................................... 137 VI 5.4 Conclusions ........................................................................................................................... 150 Chapter 6. CONCLUSIONS AND RECOMMENDATIONS FOR THE FUTURE ................................................................................................................................................... 152 6.1 Hydrocolloid structuring for biomedical applications ...................................... 153 6.2 Formation and characterisation of quiescent mixed gels ................................ 153 6.3 Visualisation of hydrocolloid microstructures ..................................................... 154 6.4 The formation and characterisation of multicomponent fluid gels ............. 155 6.5 Warm hydration of kappa carrageenan ................................................................... 156 Chapter 7. REFERENCES ................................................................................................ 158 VII List of Figures Figure 2.1 – Schematic representation of the microstructural approach, linking the materials and processing parameters with the resultant sensory response. Adapted from (Norton and Foster, 2002)……………………………………………………………………………...11 Figure 2.2 – Comparison of the textures, from soft and flexible to firm and brittle, exhibited by a range of hydrocolloids. Image adapted from Phillips and Williams (2009)………………………………………………………………………………………………………………………14 Figure 2.3 – Schematic representation of the viscosity dependence of polysaccharide systems, showing the transition from dilute regions, past the critical concentration (C*) into a concentrated region. Image adapted from Phillips and Williams (2009)………………………………………………………………………………………………………………………15 Figure 2.4 – Tetrasaccharide repeating unit of deacylated gellan. The presence of an acetyl (*) and a glyceryl (**) groups are found in native gellan (also known as high acyl gellan)………………………………………………………………………………………………………………16 Figure 2.5 – Chemical structure of the kappa carrageenan showing the anydro bridge with a single sulphate group……………………………………………………………………………………20 Figure 2.6 – Schematic representation of the coil-‐helix transition and the sol-‐gel transition of hydrocolloids (Miyoshi et al., 1996). This highlights how thermo reversible gels behave during the cooling process (a & b) and then transition back through the phases to a random network (d & c) during heating. Temperatures of the transitions are dependent on the hydrocolloid………………………………………………………..23 Figure 2.7 – Low acyl gellan formed under quiescent conditions (a) and sheared cooling to form a fluid gel (b) of low acyl gellan……………………………………………………….26 Figure 2.8 -‐ Examples of possible structures for double polymer networks: interpenetrating networks (a), coupled networks (b) and phase separated networks (c)…………………………………………………………………………………………………………………………….30 Figure 2.9 – Phase diagram for gelatin and maltodextrin mixed systems (Norton and Frith, 2001b). Norton & Frith show the bimodal, phase inversion concentration line VIII
Description: