ebook img

Micromechanics Modelling of Ductile Fracture PDF

334 Pages·2013·8.161 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Micromechanics Modelling of Ductile Fracture

Solid Mechanics and Its Applications Zengtao Chen Cliff Butcher Micromechanics Modelling of Ductile Fracture Micromechanics Modelling of Ductile Fracture SOLID MECHANICS AND ITS APPLICATIONS Volume 195 Series Editors: G.M.L. GLADWELL Department of Civil Engineering University of Waterloo Waterloo, Ontario, Canada N2L 3GI Aims and Scope of the Series The fundamental questions arising in mechanics are: Why?, How?, and How much? The aim of this series is to provide lucid accounts written by authoritative researchersgivingvisionandinsightinansweringthesequestionsonthesubjectof mechanics as it relates to solids. The scope of the series covers the entire spectrum of solid mechanics. Thus it includes the foundation of mechanics; variational formulations; computational mechanics;statics,kinematicsanddynamicsofrigidandelasticbodies:vibrations of solids and structures; dynamical systems and chaos; the theories of elasticity, plasticity and viscoelasticity; composite materials; rods, beams, shells and membranes;structuralcontrolandstability;soils,rocksandgeomechanics;fracture; tribology; experimental mechanics; biomechanics and machine design. The median level of presentation is the first year graduate student. Some texts aremonographsdefiningthecurrentstateofthefield;othersareaccessibletofinal year undergraduates; but essentially the emphasis is on readability and clarity. For furthervolumes: http://www.springer.com/series/6557 Zengtao Chen (cid:129) Cliff Butcher Micromechanics Modelling of Ductile Fracture ZengtaoChen CliffButcher DepartmentofMechanicalEngineering DepartmentofMechanical UniversityofNewBrunswick andMechatronicsEngineering Fredericton,NewBrunswick UniversityofWaterloo Canada Waterloo,Ontario Canada ISSN0925-0042 ISBN978-94-007-6097-4 ISBN978-94-007-6098-1(eBook) DOI10.1007/978-94-007-6098-1 SpringerDordrechtHeidelbergNewYorkLondon LibraryofCongressControlNumber:2013932705 #SpringerScience+BusinessMediaDordrecht2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerpts inconnectionwithreviewsorscholarlyanalysisormaterialsuppliedspecificallyforthepurposeofbeing enteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework.Duplication ofthispublicationorpartsthereofispermittedonlyundertheprovisionsoftheCopyrightLawofthe Publisher’s location, in its current version, and permission for use must always be obtained from Springer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter. ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Contents 1 IntroductiontoDuctileFractureModelling. . . . . . . . . . . . . . . . 1 1.1 RoleofMaterialDamage. . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 VoidNucleation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 ModelingVoidNucleation. . . . . . . . . . . . . . . . . . . . 3 1.1.3 VoidGrowth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.4 VoidShapeEvolution. . . . . . . . . . . . . . . . . . . . . . . 9 1.1.5 VoidCoalescence. . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2 Damage-BasedYieldCriteria. . . . . . . . . . . . . . . . . . . . . . . 16 1.2.1 GursonCriterion. . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3 VoidEvolutionandCoalescenceWithinClusters. . . . . . . . . 19 1.4 DamagePercolationModeling. . . . . . . . . . . . . . . . . . . . . . . 21 1.4.1 RoleoftheVoidDistribution. . . . . . . . . . . . . . . . . . 21 1.4.2 DamagePercolationModeling. . . . . . . . . . . . . . . . . 22 2 AveragingMethodsforComputationalMicromechanics. . . . . . 25 2.1 DefinationofAverageStressandStrain. . . . . . . . . . . . . . . . 25 2.2 FundamentalsofaConstitutiveModelforPlasticity. . . . . . . 26 2.3 NormalityandConvexityoftheYieldSurface. . . . . . . . . . . 27 2.4 PrincipleofVirtualWork. . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.5 PrincipleofMaximumPlasticWork. . . . . . . . . . . . . . . . . . 28 2.6 ExtremumTheoremsinPlasticity. . . . . . . . . . . . . . . . . . . . 28 2.6.1 UpperBoundSolution. . . . . . . . . . . . . . . . . . . . . . . 29 2.6.2 LowerBoundSolution. . . . . . . . . . . . . . . . . . . . . . . 29 2.7 Gurson’sUpperBoundSolutionforaPorous DuctileMaterial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.7.1 VoidGrowthandNucleation. . . . . . . . . . . . . . . . . . 32 2.7.2 VoidCoalescence. . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.8 LowerBoundSolutionofSunandWang. . . . . . . . . . . . . . . 40 2.8.1 VoidGrowth,NucleationandCoalescence. . . . . . . . 41 v vi Contents 2.9 UpperandLowerBoundApproachtoDuctileFracture ofPorousMaterials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.9.1 ApplicationoftheDualBoundApproachtoPorous MaterialswithVoidClusters. . . . . . . . . . . . . . . . . . 45 2.10 ApplicationoftheDualBoundApproachtoaStretchFlange FormingProcess. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.10.1 PredictingtheLimitPunchDepth. . . . . . . . . . . . . . 49 2.10.2 DamageEvolutionDuringForming. . . . . . . . . . . . . 49 2.10.3 ComparisonofthePredictedand MeasuredPorosity... ... .... ... .... .... ... .. 50 2.11 ApplicationoftheDualBoundApproachtoDuctileFracture inTubeHydroforming. . . . . .. . . . . .. . . . . .. . . . .. . . . . . 53 2.11.1 ConstitutiveModeling. . . . . . . . . . . . . . . . . . . . . . 54 2.11.2 MaterialCharacterization. . . . . . . . . . . . . . . . . . . . 54 2.11.3 Finite-ElementModel. . . . . . . . . . . . . . . . . . . . . . . 55 2.11.4 MeasuringFormability. . . . . . . . . . . . . . . . . . . . . . 56 2.11.5 Results. .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . . 57 2.11.6 EvaluationoftheDualBoundApproachforTube Hydroforming. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.12 ADualBoundApproachtoDeterminingtheVoidNucleation ParametersinSheetMaterials. . . . . . . . . . . . . . . . . . . . . . . 63 2.12.1 ConstitutiveModelingofDuctileFracture. . . . . . . . 64 2.12.2 NotchTensileTestExperiment. . . . . . . . . . . . . . . . 66 2.12.3 Finite-ElementModel. . . . . . . . . . . . . . . . . . . . . . . 68 2.12.4 IdentificationoftheFractureStrains. . . . . . . . . . . . 68 2.12.5 ResultsandDiscussion. . . . . . . . . . . . . . . . . . . . . . 70 3 Anisotropy. . . . . . .. . . . . . . . .. . . . . . . . .. . . . . . . .. . . . . . . . . 75 3.1 TheHill-48AnisotropicYieldCriterion. . . . . . . . . . . . . . . . 76 3.2 MaterialAnisotropyinPorousDuctileMaterials. . . . . . . . . . 77 3.3 AnApproximateUnitCellforPorousSheetMetals. . . . . . . 80 3.3.1 StressandStrainRateFieldsInsidetheUnitCell. . . 80 3.3.2 ElasticStressStateintheUnitCell. . . . . . . . . . . . . 81 3.3.3 PlasticStressStateintheUnitCell. . . . . . . . . . . . . 83 3.4 DerivationofaLowerBoundYieldCriterionforPorous SheetMetals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.4.1 NumericalResults. . . . . . . . . . . . . . . . . . . . . . . . . 86 3.4.2 ComparisonoftheLowerBoundSolutionwith Experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.5 DerivationofaQuasi-ExactLowerBoundAnisotropic YieldCriterionforPorousSheetMetals. . . . . . . . . . . . . . . . 90 3.5.1 DerivationoftheFlowRuleandEquivalent PlasticStrain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.5.2 AnalyticalDerivationoftheYieldFunction. . . . . . . 92 3.5.3 SolutionfortheMacroscopicRadialStress. . . . . . . 93 3.5.4 SolutionfortheMacroscopicThrough-Thickness Stress. . . . . .. . . . . .. . . . . .. . . . .. . . . . .. . . . . . 94 Contents vii 3.5.5 SolutionfortheYieldFunction. . . . . . . . . . . . . . . . . . 95 3.5.6 EffectofMechanicalAnisotropyinaPorous DuctileMaterial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 3.5.7 AssessmentoftheUniquenessoftheCurrentYield Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 3.5.8 EvaluationoftheQuasi-ExactAnisotropicYield Criterion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4 VoidGrowthtoCoalescence:UnitCellandAnalytical Modelling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.1 VoidShapeEvolutionDuringDuctileFracture. . . . . . . . . . . . 101 4.2 Damage-BasedMaterialModelswithVoidShapeEffects. . . . 102 4.3 ModelingVoidEvolutionUsingaUnitCell. . . . . . . . . . . . . . 103 4.3.1 AnalysisofanAxisymmetricUnitCell. . . . . . . . . . . . 104 4.3.2 UnitCellBoundaryConditions. . . . . . . . . . . . . . . . . . 107 4.3.3 StressStateandMicrostructureEvolution. . . . . . . . . . 107 4.3.4 IdentificationofVoidCoalescence. . . . . . . . . . . . . . . 109 4.3.5 NumericalSolutionProcedure. . . . . . . . . . . . . . . . . . 110 4.4 UnitCellSimulationResults. . . . . . . . . . . . . . . . . . . . . . . . . 111 4.4.1 Penny-ShapedVoids:W ¼ 1/100. . . . . . . . . . . . . . . 112 o 4.4.2 OblateVoids:W ¼ 1/6. . . . . . . . . . . . . . . . . . . . . . . 114 o 4.4.3 SphericalVoids:W ¼ 1. . . . . . . . . . . . . . . . . . . . . . 115 o 4.4.4 ProlateVoids:W ¼ 6. . . . . . . . . . . . . . . . . . . . . . . . 116 o 4.4.5 SelectionofaMinimumVoidAspectRatio. . . . . . . . . 118 4.5 TheoreticalModelsforVoidGrowth, ShapeandCoalescence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.5.1 YieldCriterion.. . . . . .. . . . . .. . . . . .. . . . . .. . . . . 119 4.5.2 VoidGrowth,ShapeEvolutionandCoalescence. . . . . 119 4.5.3 ComparisonwithUnitCellResults. . . . . . . . . . . . . . . 121 4.6 CalibrationoftheVoidEvolutionModels. . . . . . . . . . . . . . . 122 4.6.1 VoidGrowth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 4.6.2 VoidShapeEvolution. . . . . . . . . . . . . . . . . . . . . . . . 123 4.6.3 VoidCoalescence. . . . . . . . . . . . . . . . . . . . . . . . . . . 128 4.7 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 5 Two-Dimensional(2D)DamagePercolationModeling. . . . . . . . 133 5.1 TheDamagePercolationModel. . . . . . . . . . . . . . . . . . . . . . . 134 5.1.1 ParticleFieldTessellations. . . . . . . . . . . . . . . . . . . . . 134 5.1.2 DamageEvolutionPredictions. . . . . . . . . . . . . . . . . . 137 5.2 DamagePredictions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.2.1 DamageEvolution. . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.2.2 PredictedDamageRates. . . . . . . . . . . . . . . . . . . . . . . 144 5.3 SelectionofRepresentativeVolumeElement(RVE). . . . . . . . 146 5.3.1 ParticleFieldSizes. . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.3.2 ResultsandDiscussion. . . . . . . . . . . . . . . . . . . . . . . . 148 5.4 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 viii Contents 6 Two-Dimensional(2D)DamagePercolation/FiniteElement ModelingofSheetMetalForming. . . . . . . . . . . . . . . . . . . . . . . . 153 6.1 StretchFlangeExperiment. . . . . . . . . . . . . . . . . . . . . . . . . . 154 6.2 GTN-BasedDamageModel. . . . . . . . . . . . . . . . . . . . . . . . . 158 6.3 CoupledPercolationModel–DamagePredictions. . . . . . . . . 160 6.3.1 VoidNucleation. .. . . . . .. . . . .. . . . .. . . . . .. . . . . 160 6.3.2 VoidGrowth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 6.3.3 VoidCoalescence. . . . . . . . . . . . . . . . . . . . . . . . . . . 163 6.3.4 Post-coalescenceTreatment. . . . . . . . . . . . . . . . . . . . 163 6.4 ParticleFieldMapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 6.5 CoupledModel–MeshandParticleFields. .. . . . . . . . . . . . . 165 6.5.1 FEMesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 6.5.2 BoundaryConditions–ToolingMotion. . . . . . . . . . . 166 6.5.3 SecondPhaseParticleFields. . .. . . . .. . . .. . . .. . . . 166 6.6 GTN-BasedFEResults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 6.6.1 PorosityPredictions. . . . . . . . . . . . . . . . . . . . . . . . . . 168 6.6.2 StrainAnalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 6.7 CoupledFE/DamagePercolationPredictions. . . . . . . . . . . . . 174 6.7.1 DamageEvolution. . . . . . . . . . . . . . . . . . . . . . . . . . . 174 6.7.2 QuantitativeDamagePredictions. . . . . . . . . . . . . . . . 176 6.7.3 ComparisonwithMeasuredDamageLevels. . . . . . . . 177 6.7.4 FormabilityPredictions. . . . . . . . . . . . . . . . . . . . . . . 178 6.8 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 7 TwoDimensional(2D)DamagePercolationwithStressState. . . 181 7.1 DevelopmentofaPhenomenologicalVoidNucleation CriterionforPercolationModeling. . . . . . . . . . . . . . . . . . . . 182 7.1.1 ParticleSizeandAreaFractionFunctions. . . . . . . . . . 182 7.1.2 StressStateDependenceFunction. . . . . . . . . . . . . . . . 183 7.1.3 ApplicationoftheNucleationCriteriontoVarious ParticleFields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 7.2 PercolationModelingofDuctileFracture. . . . . . . . . . . . . . . . 186 7.2.1 VoidCoalescence. . . . . . . . . . . . . . . . . . . . . . . . . . . 186 7.2.2 ProfuseCoalescenceandFailureoftheParticleField. . 187 7.3 ParticleFieldTessellations. . . . . . . . . . . . . . . . . . . . . . . . . . 188 7.4 CalibrationoftheNucleationModel. . . . . . . . . . . . . . . . . . . 188 7.4.1 ComparisonofPredictedandExperimental FormingLimits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 7.4.2 VoidNucleation. .. . . . . .. . . . .. . . . .. . . . . .. . . . . 191 7.4.3 AverageNucleationStrain. . . . . . . . . . . . . . . . . . . . . 194 7.4.4 AverageSizeofDamagedParticle. . . . . . . . . . . . . . . 195 7.5 CalibrationofaContinuum-BasedNucleationRuleUsing thePercolationModel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 7.5.1 ContinuumNucleationModel. . . . . . . . . . . . . . . . . . . 197 7.5.2 SynchronizationoftheVoidNucleationCriteria. . . . . 197 7.6 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 Contents ix 8 Three-DimensionalParticleFields. . . . . . . . . . . . . . . . . . . . . . . 201 8.1 ParticleFieldGenerator. . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 8.1.1 ParticleFieldBasics. . . . . . . . . . . . . . . . . . . . . . . . . . 203 8.1.2 GenerationofRandomVariables. . . . . . . . . . . . . . . . 204 8.1.3 ObjectGeneration. . . . . . . . . . . . . . . . . . . . . . . . . . . 206 8.1.4 GenerationofObjectsWithinClusters. . . . . . . . . . . . 207 8.1.5 ParticleProperties. . . . . . . . . . . . . . . . . . . . . . . . . . . 210 8.1.6 ObjectConstraints. . . . . . . . . . . . . . . . . . . . . . . . . . . 210 8.1.7 IdentificationoftheParentElement. . . . . . . . . . . . . . 212 8.1.8 NumericalImplementation. . . . . . . . . . . . . . . . . . . . . 212 8.2 ApplicationoftheParticleFieldGeneratortoan Al-MgAlloy. . . .. . . . . .. . . . . . .. . . . . . .. . . . . .. . . . . . . 214 8.2.1 MaterialCharacterization. . . . . . . . . . . . . . . . . . . . . . 214 8.2.2 ParametersUsedintheParticleFieldGeneration ProcessforAA5182. . . . . . . . . . . . . . . . . . . . . . . . . . 215 8.2.3 ParticleFieldGenerationResults. . . . . . . . . . . . . . . . 216 8.2.4 ObjectDimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . 216 8.2.5 SpatialDistributionoftheObjects. . . . . . . . . . . . . . . 218 8.2.6 ParticleandVoidVolumeFractions. . . . . . . . . . . . . . 219 8.3 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 9 EstimationoftheStressStateWithinParticlesandInclusions andaNucleationModelforParticleCracking. . . . . . . . . . . . . . 223 9.1 Particle-BasedHomogenizationTheories. . . . . . . . . . . . . . . . . . . .224 9.2 SelectionofaHomogenizationTheoryforModelling VoidNucleation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 9.3 AParticle-BasedHomogenizationModelforaDual-Phase CompositeSubjectedtoaPrescribedTraction. . . . . . . . . . . . 227 9.4 EffectiveModuliofaRandomly-OrientedComposite. . . . . . . . . . .227 9.5 AverageStressintheCompositeandItsConstituents. . . . . . . . . . .229 9.6 AverageStrainintheCompositeandItsConstituents. . . . . . . . . . .229 9.7 ProcedureforIntegratingaParticle-BasedHomogenization TheoryintoanExistingDamage-Based ConstitutiveModel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 9.8 IterativeSolutionfortheEffectiveSecantModuli. . .. . . .. . . . .. .233 9.9 ApplicationoftheParticle-BasedHomogenization SchemeintoaGurson-BasedConstitutiveModel forDuctileFracture. . .. . . . . . . .. . . . . . .. . . . . . .. . . . . . . 234 9.10 ContinuumNucleation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235 9.11 VoidNucleationinaParticleField. . . . . . . . . . . . . . . . . . . . . . . .236 9.12 ModelingVoidNucleationUsingPenny-ShapedVoids. . . . . . . . . .236 9.13 ANucleationModelforParticleCracking. . . . . . . . . . . . . . . . . . .238 9.13.1 StressStateandNucleation. . . . . . . . . . . . . . . . . . . . . . .240 9.14 DeterminationoftheInitialDimensions foraNucleatedVoid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 9.15 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.