ebook img

Methods for applied macroeconomic research PDF

493 Pages·2007·5.52 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Methods for applied macroeconomic research

Contents Chapter 1: Preliminaries 1 1.1 Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Concepts of Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Almost sure (a.s.) convergence . . . . . . . . . . . . . . . . . . 3 1.2.2 Convergence in Probability . . . . . . . . . . . . . . . . . . . . . 4 1.2.3 Convergence in Lq-norm. . . . . . . . . . . . . . . . . . . . . . . 6 1.2.4 Convergence in Distribution . . . . . . . . . . . . . . . . . . . . 7 1.3 Time Series Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Law of Large Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4.1 Dependent and Identically Distributed Observations . . . . . 14 1.4.2 Dependent and Heterogeneously Distributed Observations . 15 1.4.3 Martingale Difference Process . . . . . . . . . . . . . . . . . . . 16 1.5 Central Limit Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.5.1 Dependent and Identically Distributed Observations . . . . . 17 1.5.2 Dependent Heterogeneously Distributed Observations. . . . 18 1.5.3 Martingale Difference Observations . . . . . . . . . . . . . . . . 18 1.6 Elements of Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . 19 Chapter 2: DSGE Models, Solutions and Approximations 27 2.1 Few useful models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.1.1 A basic Real Business Cycle (RBC) Model . . . . . . . . . . . 28 2.1.2 Heterogeneous agent models . . . . . . . . . . . . . . . . . . . . 35 2.1.3 Monetary Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.2 Approximation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.2.1 Quadratic approximations . . . . . . . . . . . . . . . . . . . . . . 45 2.2.2 Discretization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.2.3 Log linear Approximations . . . . . . . . . . . . . . . . . . . . . 51 2.2.4 Second order approximations . . . . . . . . . . . . . . . . . . . . . . 60 2.2.5 Parametrizing expectations . . . . . . . . . . . . . . . . . . . . . 62 2.2.6 A Comparison of methods . . . . . . . . . . . . . . . . . . . . . 65 i ii Chapter 3: Extracting and Measuring Cyclical Information 67 3.1 Statistical Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.1.1 Traditional methods . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.1.2 Beveridge-Nelson (BN) decomposition . . . . . . . . . . . . . . 69 3.1.3 Unobservable Components (UC) decompositions . . . . . . . 72 3.1.4 Regime shifting decomposition . . . . . . . . . . . . . . . . . . . 75 3.2 Hybrid Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.2.1 The Hodrick and Prescott (HP) Filter . . . . . . . . . . . . . . 79 3.2.2 Exponential smoothing (ES) filter. . . . . . . . . . . . . . . . . 86 3.2.3 Moving average (MA) filters . . . . . . . . . . . . . . . . . . . . 88 3.2.4 Band Pass (BP) filters . . . . . . . . . . . . . . . . . . . . . . . . 89 3.3 Economic Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.3.1 Blanchard and Quah (BQ) Decomposition . . . . . . . . . . . 95 3.3.2 King, Plosser Stock and Watson (KPSW) Decomposition . 97 3.4 Time Aggregation and Cycles . . . . . . . . . . . . . . . . . . . . . . . 99 3.5 Collecting Cyclical Information . . . . . . . . . . . . . . . . . . . . . . 100 Chapter 4: VAR Models 105 4.1 The Wold theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.2 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.2.1 Lag Length 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.2.2 Lag Length 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.2.3 Nonlinearities and nonnormalities . . . . . . . . . . . . . . . . . 116 4.2.4 Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.2.5 Breaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.3 Moments and parameter estimation of a VAR(q) . . . . . . . . . . . 119 4.3.1 Companion form representation . . . . . . . . . . . . . . . . . . 119 4.3.2 Simultaneous equations format . . . . . . . . . . . . . . . . . . 121 4.4 Reporting VAR results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.4.1 Impulse responses . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.4.2 Variance decomposition . . . . . . . . . . . . . . . . . . . . . . . 124 4.4.3 Historical decomposition . . . . . . . . . . . . . . . . . . . . . . 125 4.4.4 Distribution of Impulse Responses . . . . . . . . . . . . . . . . 125 4.4.5 Generalized Impulse Responses . . . . . . . . . . . . . . . . . . 130 4.5 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 4.5.1 Stationary VARs . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 4.5.2 Nonstationary VARs . . . . . . . . . . . . . . . . . . . . . . . . . 137 4.5.3 Alternative identification schemes . . . . . . . . . . . . . . . . . 139 4.6 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 4.7 Validating DSGE models with VARs . . . . . . . . . . . . . . . . . . . 151 iii Chapter 5: GMM and Simulation Estimators 157 5.1 Generalized Method of Moment and other standard estimators . . 158 5.2 IV estimation in a linear model . . . . . . . . . . . . . . . . . . . . . . 161 5.3 GMM Estimation: An overview . . . . . . . . . . . . . . . . . . . . . . 167 5.3.1 Asymptotics of GMM estimators . . . . . . . . . . . . . . . . . 168 5.3.2 Estimating the Covariance Matrix . . . . . . . . . . . . . . . . 170 5.3.3 Optimizing the Asymptotic covariance matrix . . . . . . . . . 174 5.3.4 Sequential GMM Estimation . . . . . . . . . . . . . . . . . . . . 175 5.3.5 Two-Step Estimators . . . . . . . . . . . . . . . . . . . . . . . . . 176 5.3.6 Hypotheses Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 177 5.4 GMM estimation of DSGE models . . . . . . . . . . . . . . . . . . . . 181 5.4.1 Some Applied tips . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 5.5 Simulation Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 5.5.1 The General Problem . . . . . . . . . . . . . . . . . . . . . . . . 188 5.5.2 Simulated Method of Moments Estimator . . . . . . . . . . . 191 5.5.3 Simulated Quasi-Maximum Likelihood/ Indirect Inference . 192 5.5.4 Matching impulse responses . . . . . . . . . . . . . . . . . . . . . . . 196 Chapter 6: Likelihood methods 201 6.1 The Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 6.2 The Prediction error decomposition of likelihood . . . . . . . . . . . 209 6.2.1 Some Asymptotics of ML estimators . . . . . . . . . . . . . . . 213 6.3 Numerical tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 6.4 ML estimation of DSGE models . . . . . . . . . . . . . . . . . . . . . . 218 6.5 Two examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 6.5.1 Does monetary policy react to technolocy shocks? . . . . . . 227 6.5.2 Does fiscal policy help to stabilize the cycle? . . . . . . . . . . 233 Chapter 7: Calibration 235 7.1 A Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 7.2 The Uncontroversial parts . . . . . . . . . . . . . . . . . . . . . . . . . . 237 7.3 Choosing parameters and stochastic processes . . . . . . . . . . . . . 239 7.4 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 7.4.1 Watson’s R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 7.4.2 Measure of fit based on simulation variability . . . . . . . . . 253 7.4.3 Measures of fit based on sampling variability . . . . . . . . . 256 7.4.4 Measures of fit based on sampling and simulation variability 259 7.5 The sensitivity of the measurement . . . . . . . . . . . . . . . . . . . . 265 7.6 Savings, Investments and Tax cuts: an example . . . . . . . . . . . . 268 iv Chapter 8: Dynamic Macro Panels 273 8.1 From economic theory to dynamic panels . . . . . . . . . . . . . . . . 274 8.2 Panels with Homogeneous dynamics . . . . . . . . . . . . . . . . . . . 276 8.2.1 Pitfalls of standard methods . . . . . . . . . . . . . . . . . . . . 278 8.2.2 The Correct approach . . . . . . . . . . . . . . . . . . . . . . . . 280 8.2.3 Restricted models . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 8.2.4 Recovering the individual effect . . . . . . . . . . . . . . . . . . 285 8.2.5 Some practical issues . . . . . . . . . . . . . . . . . . . . . . . . . 286 8.3 Dynamic heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 8.3.1 Average time series estimator . . . . . . . . . . . . . . . . . . . 290 8.3.2 Pooled estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 8.3.3 Aggregate time series estimator . . . . . . . . . . . . . . . . . . 294 8.3.4 Average Cross sectional Estimator . . . . . . . . . . . . . . . . 295 8.3.5 Testing for dynamic heterogeneity . . . . . . . . . . . . . . . . 297 8.4 To Pool or not to Pool? . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 8.4.1 What goes wrong with two-step regressions? . . . . . . . . . . 302 8.5 Is Money superneutral? . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 Chapter 9: Introduction to Bayesian Methods 309 9.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 9.1.1 Bayes Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 9.1.2 Prior Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 9.2 Decision Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 9.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 9.3.1 Inference with Multiple Models . . . . . . . . . . . . . . . . . . 322 9.3.2 Normal Approximations . . . . . . . . . . . . . . . . . . . . . . . 323 9.3.3 Testing hypotheses/relative fit of different models . . . . . . 325 9.3.4 Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 9.4 Hierarchical and Empirical Bayes models . . . . . . . . . . . . . . . . 328 9.4.1 Empirical Bayes methods . . . . . . . . . . . . . . . . . . . . . . 332 9.4.2 Meta analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 9.5 Posterior simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336 9.5.1 Normal posterior analysis . . . . . . . . . . . . . . . . . . . . . . 336 9.5.2 Basic Posterior Simulators . . . . . . . . . . . . . . . . . . . . . 337 9.5.3 Markov Chain Monte Carlo Methods . . . . . . . . . . . . . . 340 9.6 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 9.7 Estimating Returns to scale: Spain (1979-1999) . . . . . . . . . . . . 352 Chapter 10: Bayesian VARs 355 10.1 The Likelihood function of an m variable VAR(q) . . . . . . . . . . 356 10.2 Priors for VARs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 10.2.1 Least square under uncertain restrictions . . . . . . . . . . . . 358 10.2.2 The Minnesota prior . . . . . . . . . . . . . . . . . . . . . . . . . 359 v 10.2.3 Adding other prior restrictions . . . . . . . . . . . . . . . . . . 363 10.2.4 Some Applied tips . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 10.2.5 Priors derived from DSGE models . . . . . . . . . . . . . . . . 366 10.2.6 Probability distributions for forecasts: Fan Charts . . . . . . 370 10.3 Structural BVARs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 10.4 Time Varying Coefficients BVARs . . . . . . . . . . . . . . . . . . . . 379 10.4.1 Minnesota style prior . . . . . . . . . . . . . . . . . . . . . . . . . 380 10.4.2 Hierarchical prior . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 10.5 Panel VAR models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 10.5.1 Univariate dynamic panels . . . . . . . . . . . . . . . . . . . . . 385 10.5.2 Endogenous grouping . . . . . . . . . . . . . . . . . . . . . . . . . 388 10.5.3 Panel VARs with interdependencies . . . . . . . . . . . . . . . 392 10.5.4 Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 10.5.5 Impulse responses . . . . . . . . . . . . . . . . . . . . . . . . . . . 396 Chapter 11: Bayesian time series and DSGE models 399 11.1 Factor Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 11.1.1 Arbitrage Pricing (APT) Models . . . . . . . . . . . . . . . . . 403 11.1.2 Conditional Capital Asset Pricing models (CAPM) . . . . . 406 11.2 Stochastic Volatility Models . . . . . . . . . . . . . . . . . . . . . . . . 408 11.3 Markov switching models . . . . . . . . . . . . . . . . . . . . . . . . . . 414 11.3.1 A more complicated structure . . . . . . . . . . . . . . . . . . . 415 11.3.2 A General Markov switching specification . . . . . . . . . . . 418 11.4 Bayesian DSGE Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 420 11.4.1 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422 11.4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424 11.4.3 A few applied tips . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 11.4.4 Comparing the quality of models to the data . . . . . . . . . 433 11.4.5 DSGEs and VARs, once again . . . . . . . . . . . . . . . . . . . 438 11.4.6 Non linear specifications . . . . . . . . . . . . . . . . . . . . . . . 439 11.4.7 Which approach to use? . . . . . . . . . . . . . . . . . . . . . . . 440 Appendix 443 vi List of Figures 1.1 Short and long cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.2 Spectral Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.3 Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.4 Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1 Cyclical weights and gain function, HP filter . . . . . . . . . . . . . . . . . . 81 3.2 Gain functions, HP and ES filters . . . . . . . . . . . . . . . . . . . . . . . . 82 3.3 ACF of the cyclical component . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.4 Gain: symmetric and asymmetric MA and HP filters . . . . . . . . . . . . . 89 3.5 Gain, ideal and approximate BP filters . . . . . . . . . . . . . . . . . . . . . 93 3.6 Monthly and Quarterly spectrum, simulated data and IP growth . . . . . . 99 4.1 Non fundamental technological progress . . . . . . . . . . . . . . . . . . . . 109 4.2 Bootstrap responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 4.3 Impulse responses to monetary shocks, Working capital model . . . . . . . . 141 4.4 Responses to a US policy shock, 1964:1-2001:10 . . . . . . . . . . . . . . . . 144 4.5 Quarterly and Monthly MA representations . . . . . . . . . . . . . . . . . . 145 4.6 Responses in the Blanchard and Quah model . . . . . . . . . . . . . . . . . 150 4.7 Responses to Monetary Shocks . . . . . . . . . . . . . . . . . . . . . . . . . 154 5.1 Responses to Monetary shocks in the model . . . . . . . . . . . . . . . . . . 198 5.2 Shape of distance function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 6.1 Likelihood function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 6.2 Likelihood surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 6.3 Impulse responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 7.1 Watson’s measure of fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 7.2 Spectra and Coherences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 7.3 Distributions of Hours and Real Wage Correlation . . . . . . . . . . . . . . 260 7.4 Effects of tax cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 8.1 Individual Effects, GDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 8.2 Cross sectional distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 vii viii 8.3 Output growth responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 8.4 Alternative Estimators of Output Responses in Japan . . . . . . . . . . . . 306 9.1 Prior and posterior densities. . . . . . . . . . . . . . . . . . . . . . . . . . . 317 9.2 Highest credible set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 9.3 Price Differential responses, US states . . . . . . . . . . . . . . . . . . . . . 335 9.4 Posterior simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 9.5 MCMC draws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 9.6 True and Gibbs sampling distributions . . . . . . . . . . . . . . . . . . . . . 346 9.7 MCMC simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 10.1 Minnesota prior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 10.2 Forecasts of Italian inflation. . . . . . . . . . . . . . . . . . . . . . . . . . . 372 10.3 Median and 68% band for the responses to a US monetary policy shock. . . 378 10.4 Median responses to US monetary policy shock. . . . . . . . . . . . . . . . . 385 10.5 Cross sectional density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387 10.6 Convergence clubs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 10.7 One year ahead 68% prediction bands, EU . . . . . . . . . . . . . . . . . . . 398 11.1 Coincident Indicator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404 11.2 Recession probabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416 11.3 Likelihood and Posterior, RBC model. . . . . . . . . . . . . . . . . . . . . . 424 11.4 Priors and Posteriors, Basic RBC. . . . . . . . . . . . . . . . . . . . . . . . 426 11.5 Priors and Posteriors, RBC with habit.. . . . . . . . . . . . . . . . . . . . . 427 11.6 CUMSUM statistic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 11.7 Priors (dotted) and Posteriors (solid), Sticky price model. . . . . . . . . . . 431 11.8 Impulse Responses, sample 1948-2002. . . . . . . . . . . . . . . . . . . . . . 434 11.9 Impulse responses, various samples . . . . . . . . . . . . . . . . . . . . . . . 435 List of Tables 3.1 Simulated statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.2 Summary statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 3.3 US Business Cycle Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.1 Penalties of Akaike, Hannan and Quinn and Schwarz criteria . . . . . . . . 114 4.2 Lag length of a VAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.3 Regressions on simulated data . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.1 Estimates of New Keynesian Phillips curve . . . . . . . . . . . . . . . . . . 167 5.2 Estimates of a RBC model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 5.3 Moments of the data and of the model . . . . . . . . . . . . . . . . . . . . . 184 5.4 Indirect Inference Estimates of New Keynesian Phillips curve . . . . . . . . 195 6.1 ML estimates, Sticky Price model . . . . . . . . . . . . . . . . . . . . . . . . 229 6.2 Cross covariances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 6.3 ML estimates, US 1948-1984. . . . . . . . . . . . . . . . . . . . . . . . . . . 233 6.4 Diebold and Mariano Statistic . . . . . . . . . . . . . . . . . . . . . . . . . . 234 7.1 Monte Carlo distribution of αρ . . . . . . . . . . . . . . . . . . . . . . . . . 244 | 7.2 ACF of hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 7.3 Cross correlation hours-wage . . . . . . . . . . . . . . . . . . . . . . . . . . 255 7.4 Parameters selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 7.5 The Fit of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 8.1 Growth and Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 8.2 Bias in the AR(1) coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . 279 8.3 Monte Carlo evidence I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 8.4 Monte Carlo evidence II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 9.1 Posterior distribution of returns to scale . . . . . . . . . . . . . . . . . . . . 354 10.1 One year ahead Theil-U statistics. . . . . . . . . . . . . . . . . . . . . . . . 366 10.2 Marginal Likelihood, Sticky price sticky wage model. . . . . . . . . . . . . . 370 ix

Description:
The last twenty years have witnessed tremendous advances in the mathematical, statistical, and computational tools available to applied macroeconomists. This rapidly evolving field has redefined how researchers test models and validate theories. Yet until now there has been no textbook that unites t
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.