ebook img

Method of Guiding Functions in Problems of Nonlinear Analysis PDF

189 Pages·2013·3.388 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Method of Guiding Functions in Problems of Nonlinear Analysis

Lecture Notes in Mathematics 2076 Valeri Obukhovskii Pietro Zecca Nguyen Van Loi Sergei Kornev Method of Guiding Functions in Problems of Nonlinear Analysis Lecture Notes in Mathematics 2076 Editors: J.-M.Morel,Cachan B.Teissier,Paris Forfurthervolumes: http://www.springer.com/series/304 Valeri Obukhovskii Pietro Zecca (cid:2) Nguyen Van Loi Sergei Kornev (cid:2) Method of Guiding Functions in Problems of Nonlinear Analysis 123 ValeriObukhovskii PietroZecca SergeiKornev DipartimentodiMatematicaeInformatica DepartmentofPhysicsandMathematics “UDini” VoronezhStatePedagogicalUniversity Universita`diFirenze Voronezh,Russia Firenze,Italy NguyenVanLoi FacultyofFundamentalScience PetroVietNamUniversity BaRia,Vietnam ISBN978-3-642-37069-4 ISBN978-3-642-37070-0(eBook) DOI10.1007/978-3-642-37070-0 SpringerHeidelbergNewYorkDordrechtLondon LectureNotesinMathematicsISSNprintedition:0075-8434 ISSNelectronicedition:1617-9692 LibraryofCongressControlNumber:2013937327 MathematicsSubjectClassification(2010):34C25,34C23,47J15,58E07,34C15,34B15,34A60, 34G25,34H05,47H04,47H08,47H09,47H11,47J05, 49J52,34K09,34K13,34K18,34K30,34K35,54H25, 91A23,93C10,47N50 (cid:2)c Springer-VerlagBerlinHeidelberg2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Acknowledgements The work of V. Obukhovskii and S. Kornev was supported by the Russian FBR Grants 11-01-00328and 12-01-00392.Professor V. Obukhovskiiis much obliged totheUniversityofFlorencewhichsupportedhisworkoverthebook.Theworkof P.ZeccawassupportedbyaUniversityofFirenzeResearchGrant. v Contents 1 Background................................................................... 1 1.1 Multimaps............................................................... 1 1.1.1 GeneralProperties.............................................. 1 1.1.2 MeasurableMultifunctionsandSuperposition Multioperator ................................................... 5 1.1.3 Single-ValuedApproximations ................................ 8 1.2 TopologicalDegree ..................................................... 12 1.3 CoincidenceDegree..................................................... 18 1.4 PhaseSpaces ............................................................ 22 1.5 Notation ................................................................. 24 2 MethodofGuidingFunctionsinFinite-DimensionalSpaces ........... 25 2.1 PeriodicProblemforaDifferentialInclusion ......................... 25 2.2 Non-smoothGuidingFunctions........................................ 36 2.3 IntegralGuidingFunctions ............................................ 39 2.4 GeneralizedPeriodicProblems......................................... 43 2.4.1 Preliminaries.................................................... 43 2.4.2 TheSettingoftheProblem..................................... 44 2.4.3 ApplicationtoDifferentialGames............................. 45 2.4.4 ExistenceTheorem,CorollariesandExample ................ 46 2.5 GlobalBifurcationProblems........................................... 50 2.5.1 AbstractResult.................................................. 51 2.5.2 GlobalBifurcationofPeriodicSolutions...................... 52 2.5.3 Application 1: Differential Inclusion withaBoundedNonlinearity................................... 63 2.5.4 Application2:GlobalBifurcationforFunctional DifferentialInclusions.......................................... 64 2.5.5 Application3:FeedbackControlSystem...................... 65 vii viii Contents 3 MethodofGuidingFunctionsinHilbertSpaces ......................... 69 3.1 IntegralGuidingFunctionsforDifferentialInclusions inHilbertSpaces........................................................ 69 3.1.1 TheSettingoftheProblem..................................... 69 3.1.2 ExistenceofPeriodicSolutions................................ 72 3.1.3 ApproximationConditions..................................... 77 3.1.4 Application1:ControlProblemof a Partial DifferentialEquation ........................................... 80 3.2 Non-smooth Guiding Functions for Functional DifferentialInclusionswithInfiniteDelayinHilbertSpaces......... 83 3.2.1 SettingoftheProblem.......................................... 83 3.2.2 ExistenceTheorem ............................................. 86 3.2.3 Application:ExistenceofPeriodicSolutions foraGradientFunctionalDifferentialInclusion.............. 90 3.3 BifurcationProblem .................................................... 93 3.3.1 TheSettingoftheProblem..................................... 93 3.3.2 GlobalBifurcationTheorem ................................... 96 3.3.3 Application 3: Ordinary FeedbackControl SystemsinaHilbertSpace..................................... 102 4 Second-OrderDifferentialInclusions...................................... 105 4.1 ExistenceTheoreminanOne-DimensionalSpace.................... 105 4.2 Applications............................................................. 110 4.2.1 EquationswithDiscontinuousNonlinearities................. 110 4.2.2 BoundaryValueProblem....................................... 113 4.2.3 ASecond-OrderDifferentialEquation ........................ 114 4.2.4 FeedbackControlSystems..................................... 114 4.2.5 A Model of a Motion of a Particle in a One-DimensionalPotential..................................... 118 4.3 ExistenceTheoreminHilbertSpaces.................................. 120 4.3.1 ApplicationtoaSecond-OrderFeedbackControl SysteminHilbertSpace........................................ 122 4.3.2 Example......................................................... 127 5 NonlinearFredholmInclusionsandApplications........................ 131 5.1 Preliminaries ............................................................ 131 5.2 OrientedCoincidenceIndex............................................ 133 5.2.1 TheCaseofaFiniteDimensionalTriplet ..................... 134 5.2.2 TheCaseofaCompactTriplet................................. 138 5.2.3 OrientedCoincidenceIndexforCondensingTriplets......... 139 5.3 CalculationoftheOrientedCoincidenceIndexbytheMGF......... 145 5.3.1 TheMainResult ................................................ 145 5.3.2 Example......................................................... 153 Contents ix 5.4 GlobalBifurcationProblem............................................ 155 5.4.1 AbstractResult.................................................. 155 5.4.2 GlobalBifurcationforFamiliesofPeriodicTrajectories..... 158 5.4.3 Example......................................................... 163 References......................................................................... 167 Index............................................................................... 175

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.