ebook img

Membrane Bioenergetics PDF

453 Pages·1988·17.903 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Membrane Bioenergetics

Vladimir P. Skulachev Membrane Bioenergetics With 130 Figures and 18 Tables Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Vladimir P. Skulachev Department of Bioenergetics, A. N. Belozersky Laboratory of Molecular Biology and Bioorganic Chemistry, Moscow State University, Moscow 119899, USSR ISBN-13: 978-3-642-72980-5 e-ISBN-13: 978-3-642-72978-2 001: 10.1007/978-3-642-72978-2 Library of Congress CataIoging-in-Pnblication Data. Skulachev, V. P. (Vladimir Petrovich) Membrane bioenergetics. Bibliography: p. Includes index. 1. Membranes (Biology) 2. Bioenergetics. I. Title. [DNLM: 1. Cell Membrane metabolism. 2. Energy Metabolism. QH 601 S629 m] QH601.S545 1988 574.87'5 87-28525 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the German Copyright Law of September 9,1965, in its version of June 24, 1985, and a copyright fee must always be paid. Violations fall under the prosecution act of the German Copyright Law. © Springer-Verlag Berlin Heidelberg 1988 Softcover reprint of the hardcover 1s t ed ition 1988 The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Typesetting: Briihlsche Universitatsdruckerei, Giessen Preface This book is devoted to membrane bioenergetics, one of the most rapidly "growing points" of physico-chemical biology. In the last 2 decades, the developement of bioenergetic research has been so tempestuous and debates on crucial problems so uncompromising that we find it necessary to summarize, in a calm and orderly manner, the firmly established facts and separate them from what belongs to the realm of speculation. We will try to consider a great variety of described events within the framework of a single coherent concept using the same terminology. Such is the aim of this book meant for a wide range of readers, from specialists working in this field, to university students taking an in-depth interest in biological energy transductions. In general, the monograph may serve as a textbook. My goal was to present an extensive analysis of the field and I hope that the majority of subjects related in some way to membrane bioenergetics are at least mentioned in the book and are included in the Subject Index. Certain sections are written in greater detail, particularly those dealing with novel and promising approaches (especially when the studies were carried out by our group: here, I would like to ask my reader for some leniency - in a way, I am in the shoes of the author of a chronicle dwelling on events he has witnessed at first hand). The text is supplemented with a list of references. Albeit a long one, it includes but a small part of the membrane bioenergetic literature. While compiling this list, I gave preference to the pioneering publications on the subject matter and to the latest reviews or experimental papers containing the most important references. This may be helpful for finding further essential information, if necessary. I am very grateful to Dr. A. A. Konstantinov and all the participants in the theoretical bioenergetics seminar at the A. N. Belozersky Laboratory of Moscow University for discussions and advice, to Drs. L. E. Bakeeva and D. B. Zorov for microphotographs and to Ms. O. O. Malakhovskaya, Mr. A. L. Drachev, Ms. T. N. Konstantinova, Mr. I. S. Kochubey and Ms. N. M. Goreyshina for their assistance in preparing the manuscript. January, 1988 Vladimir P. Skulachev Contents Abbreviations . . XIII 1 Introduction 1 1.1 A "Biology Building" and the Place of Bioenergetics 1 1.2 Essential Definitions . . . . . . . . 3 1.2.1 Energy-Transducing Membranes . . . . . . 3 1.2.2 Coupling Ions . . . . . . . . . . . . . . 5 1.2.3 Convertible Energy Currencies of the Living Cell 6 1.3 AjlH, Ap, AjlNa and As . 8 1.4 Adenosine Triphosphate . 9 1.5 Membrane Lipids. . 11 1.6 Lipid Bilayer. . . . 15 1.7 Membrane Proteins. 16 2 Specific Methods of Membrane Bioenergetics 19 2.1 Membrane Potential Measurement . . 19 2.1.1 Proteoliposomes . . . . . . . 19 2.1.2 Direct A'P Measurement in the Proteoliposome- Collodion Film System . . . . . . . . . . . 20 2.1.3 A'P Measurement in Intact Cells and Organelles 25 2.1.3.1 Microelectrode Techniques. . . . . . 25 2.1.3.2 Natural Penetrating Ions and Ionophores 26 2.1.3.3 Synthetic Penetrating Ions . . . . . . . 27 2.1.3.4 Fluorescing Penetrating Ions: A A'P Monitoring in a Single Cell or Organelle 30 2.1.3.5 The Carotenoid Shift . . . . . . 32 2.2 ApH Measurement . . . . . . . . . . . . . . 32 2.3 Measurement of Fast H+ Dissociation-Association 33 3 Primary AjiH Generators. . . . . . . . . . . . . . 35 3.1 The Cyclic Photoredox Chain of Purple Bacteria . 35 3.1.1 The Main Components and the Principle of Their Function . . . . . . . . . . . 35 3.1.2 The Reaction Centre Complex . . . . . . 40 3.1.2.1 The Protein Composition . . . . 40 3.1.2.2 The Arrangement of Redox Groups 41 3.1.2.3 The Sequence of Electron Transfer Events 48 3.1.2.4 The Mechanism of AjlH Generation. . . 50 VIII Contents 3.1.3 The CoQH -Cytochrome c Reductase. 55 2 3.1.4 The Fate of Generated ApE . 56 3.2 The Non-Cyclic Photoredox Chain of Green Bacteria 57 3.3 The Non-Cyclic Photoredox Chain of Chloroplasts and Cyanobacteria 60 3.3.1 The Principle of Functioning . 61 3.3.2 Photosystem I 63 3.3.2.1 The Subunit Composition 63 3.3.2.2 The Electron Transfer Mechanism. 63 3.3.2.3 The Mechanism of A~H Generation . 64 3.3.3 Photosystem II . 65 3.3.4 PQH -Plastocyanin Reductase 66 2 3.3.5 The Fate of A~H Generated by the Chloroplast Photosynthetic Redox Chain . 70 3.4 The Respiratory Chain 71 3.4.1 The Principle of Functioning. . . . 72 3.4.2 The Sources of Reducing Equivalents 74 3.4.3 NADH-CoQ Reductase. 75 3.4.3.1 Protein Composition and Redox Centres . 75 3.4.3.2 Proof of A~H Generation 77 3.4.3.3 Possible Mechanisms of A~H Generation. 77 3.4.4 The CoQH -Cytochrome c Reductase. 82 2 3.4.4.1 Structural Aspects. 82 3.4.4.2 A Functional Model. 88 3.4.4.3 Interrelations of CoQ(PQ)-Cytochrome c Reductases in Respiratory and Photosynthetic Redox Chains 90 3.4.5 Cytochrome Oxidase 91 3.4.5.1 Cytochrome c 91 3.4.5.2 The Structure of Cytochrome c Oxidase 92 3.4.5.3 Electron Transfer Path. 95 3.4.5.4 The Mechanism of A~H Generation . 99 3.4.6 A Three-Cycle Version of the Respiratory Chain 102 3.4.7 Shortened Versions of the A~H Generating Respiratory Chain. 104 3.4.7.1 Reduction of Nitrate 105 3.4.7.2 Reduction of Fumarate 105 3.4.7.3 Methanogenesis. 107 3.4.7.4 Oxidations of Substrates of a Positive Redox Potential. 108 3.4.8 The Pathways and the Efficiency of Utilization of Respiratory A~H. P /0 Ratio . 110 3.5 Bacteriorhodopsin 112 3.5.1 The Principle of Functioning . 112 3.5.2 The Structure of Bacteriorhodopsin . 114 3.5.3 Lipids of the Bacteriorhodopsin Sheets 118 3.5.4 Organization of the Bacteriorhodopsin Sheet . 120 Contents IX 3.5.5 Bacteriorhodopsin Photocyc1e . . . . . . . . .. 120 3.5.6 Uphill H+ Transport by Bacteriorhodopsin . . .. 122 3.5.6.1 Correlation of Photocyc1e, A'll Generation, H+ Release and Uptake. . . . . . . .. 122 3.5.6.2 A Possible Mechanism of H+ Pumping .. 124 3.5.7 Bacteriorhodopsin in the Dark. Problem of H+ Leakage. 129 3.5.8 Other Retinal Proteins . . . . . . . . . . 130 3.5.8.1 Halorhodopsin. . . . . . . . . . 130 3.5.8.2 Halobacterial Sensory Rhodopsin and Phoborhodopsin . . 132 3.5.8.3 Animal Rhodopsin . . . . . . . . 134 3.6 Primary Aj1H Generators: Overview. . . . . . . . 141 3.6.1 The Number of Aj1H Generators in the Living Systems of Various Types. . . . . . . . . . . . . . . .. 141 3.6.2 Interrelations of H+ and e Transfer in Aj1H Generating Mechanisms . . . . . . . . . . . . . . . . . .. 144 4 Secondary AjiH Generators: H+ -ATPases. . . . . 145 4.1 Definition and Classification . . . . . . . . 145 4.2 H+ -ATPases of Obligate Anaerobic Bacteria. 147 4.3 H+-ATPase of the Plant and Fungal Outer Cell Membrane 149 4.4 H+ -ATPase of Tonoplast . . . . . . . . . . 150 4.5 Non-Mitochondrial H+ -ATPase in Animal Cells 152 4.5.1 H+ -ATPase of Chromaffin Granules 152 4.5.2 Other H+ -ATPase . . . . . . . . . . 153 4.5.3 Gastric Mucosa H+ /K + ATPase . . . . 154 4.6 Interrelation of Various Functions of H +- ATPase. 155 5 AjiH Consumers. . . . . . . . . 157 5.1 Aj1H-Driven Chemical Work. 157 5.1.1 H+ -ATP Synthase . . 157 5.1.1.1 Subunit Composition 157 5.1.1.2 A Three-Dimensional Structure and Arrangement in the Membrane . . . . . . . . . . . .. 167 5.1.1.3 ATP Hydrolysis by Isolated Fl. . . . . . . . 170 5.1.1.4 Synthesis of Bound ATP by Isolated Factor Fl. 172 5.1.1.5 Fo-Mediated H+ Conductance ........ 173 5.1.1.6 Aj1H-ATP Interconversion by H+ -ATP Synthase in Proteoliposomes . . . . . . . . . . .. 175 5.1.1.7 H+ /ATP Stoichiometry . . . . . . . . . . . 176 5.1.1.8 Possible Mechanisms of Energy Transduction. . 177 5.1.1.9 Can Localized Aj1H be Involved in ATP Synthesis? 182 5.1.2 H+ -Pyrophosphate Synthase. . 186 5.1.3 H+ -Transhydrogenase. . . . . . . . . . . . . 187 5.1.3.1 General Characteristics . . . . . . . . 187 5.1.3.2 The Mechanism of Energy Transduction. 188 X Contents 5.1.3.3 Biological Functions. 190 5.1.3.4 Other Systems of the Reverse Transfer of Reducing Equivalents 190 5.2 ~pH-Driven Osmotic Work 191 5.2.1 Definition and Classification . 191 5.2.2 ~'P as the Driving Force 192 5.2.3 ~pH as the Driving Force . 193 5.2.4 Total ~P.H as the Driving Force 195 5.2.5 ~P.H-Driven Transport Cascades 197 5.2.6 Carnitine: An Example of the Transmembrane Group Carrier 198 5.2.7 Some Examples of Proteins Catalyzing ~P.H-Driven Transports. · 202 5.2.7.1 E. coli Lactose, H + Symporter · 203 5.2.7.2 Mitochondrial ATPjADP Antiporter · 205 5.2.7.3 Mitochondrial HzPOi, H+ Symporter . · 208 5.2.8 The Role of ~P.H in the Transport of Marcomolecules . · 209 5.2.8.1 Transport of Mitochondrial Proteins, Biogenesis of Mitochondria · 210 5.2.8.2 Transport of Bacterial Proteins . · 215 5.2.8.3 The Role of ~P.H in Transmembrane Protein Movement and Arrangement . · 216 5.2.8.4 Bacterial DNA Transport .220 5.3 ~P.H-Driven Mechanical Work: Bacterial Motility. · 221 5.3.1 The Structure of the Bacterial Flagellar Motor · 221 5.3.2 ~P.H Powers the Flagellar Motor . · 223 5.3.3 A Possible Mechanism of the H + Motor. · 225 5.3.4 ~P.H-Driven Movement of Non-Flagellar Motile Prokaryotes and Intracellular Organelles . · 228 5.3.5 Motile Eukaryote-Prokaryote Symbionts. · 230 5.4 ~P.H as an Energy Source for Heat Production . · 232 5.4.1 Three Ways of Converting Metabolic Energy into Heat · 232 5.4.2 Thermoregulatory Activation of Free Respiration in Animals. · 233 5.4.2.1 Skeletal Muscles · 233 5.4.2.2 Brown Fat. · 238 5.4.2.3 Liver .242 5.4.3 Thermoregulatory Activation of Free Respiration in Plants 244 6 AjiH Regulation, Transmission and Buffering . 247 6.1 Regulation of ~P.H . . . . . . . . . . 247 6.1.1 Alternative Functions of Respiration . 247 6.1.2 Regulation of the Flows of Reducing Equivalents Between Cytosol and Mitochondria. . 251 6.1.3 ~'P - ~pH Interconversion . . . . . . ....... 254 Contents XI 6.1.4 Relation of the AP.H Control to the Main Regulatory Systems of Eukaryotic Cells · 255 6.1.5 AP.H Control in Bacteria · 256 6.2 AP.H Transmission . . . . . . . · 258 6.2.1 General Remarks ..... · 258 6.2.2 Lateral Transmission of AP.H Produced by Light - Dependent Generators in Halobacteria and Chloroplasts . 259 6.2.3 Transcellular Power Transmission Along Cyanobacterial Trichomes. . . . . . . . . . . . . . . . . . . . . 260 6.2.4 The Structure and Functions of Filamentous Mitochondria and Mitochondrial Reticulum . . . . . . . . . . . . 260 6.2.4.1 The Dogma of Small Mitochondria . . . . .. 260 6.2.4.2 Giant Mitochondria and Reticulum mitochondriale 261 6.2.4.3 Filamentous Mitochondria. . . . . . .. . 269 6.2.4.4 Mitochondria as Intracellular Proton Cables: Verification of the Hypothesis . . . . . . .272 6.2.4.5 The Possible Mechanism of Lateral AP.H Transmission. . . . . . . . . . . . . . · 277 6.2.4.6 Lateral Transport of Ca2+, Fatty Acids and Oxygen . . . . . . . . . . . . . . .. . 279 6.2.4.7 Lateral Transport of the Reducing Equivalents . 282 6.2.4.8 Cytochrome bs-Mediated Intermembrane Electron Transport . . . . . . . . . · 283 6.3 AP.H Buffering . . . . . . . . . . . . . . . . . . · 286 6.3.1 Na + jK + Gradients as a AP.H Buffer in Bacteria · 286 6.3.2 Other AP.H - Buffering Systems ...... . · 289 6.3.3 Carnosine and Anserine as Specialized pH Buffers · 290 7 The Sodium World. . . . . . . . . . . . 293 7.1 AP.Na Generators. . . . . . . . . . 293 7.1.1 Na + - Motive Decarboxylases . 293 7.1.2 Na + - Motive Respiratory Chain. . 295 7.1.3 Na+ - ATPases . . . . . . . . . 298 7.1.3.1 Bacterial Na+ - ATPases . 298 7.1.3.2 Animal Na+jK+ ATPase and Na+ ATPase . 299 7.2 Utilization of AP.Na Produced by Primary AP.Na Generators . 301 7.2.1 Osmotic Work. . . . . . . . . . . . . . . .. . 301 7.2.1.1. Na +, Solute - Symports . . . . . . . .. 301 7.2.1.2 Na + Ions and Regulation of the Cytoplasmic pH 302 7.2.2 Mechanical Work . . . . . . . . . . . . . . .. 304 7.2.3 Chemical Work . . . . . . . . . . . . . . . .. 305 7.2.3.1 The AP.Na-Driven ATP Synthesis in Anaerobic Bacteria . . . . . . . . . . . . . . . . . . 306 7.2.3.2 Na +- Coupled Respiratory Phosphorylation in Vibrio algino/yticus . . . . . . . . 310 7.3 How Often is the Na + Cycle Used by Living Cells? . . . . . . 313

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.