ebook img

Measurement of the D0 meson production in Pb–Pb and p–Pb collisions with ALICE detector at the ... PDF

197 Pages·2015·6.97 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Measurement of the D0 meson production in Pb–Pb and p–Pb collisions with ALICE detector at the ...

Universita(cid:18) degli Studi di Padova Dipartimento di Fisica e Astronomia \Galileo Galilei" Measurement of the D0 meson production in Pb–Pb and p–Pb collisions with the ALICE experiment at the LHC Andrea Vitturi Direttore della Scuola: Ch.mo Prof. Andrea Dainese Supervisore: Dott. Andrea Festanti Dottorando: Scuola di dottorato di ricerca in Fisica XXVII CICLO Abstract This thesis presents the measurement of the charmed D0 meson production relative to the reaction plane in Pb{Pb collisions at the centre-of-mass energy per nucleon{nucleon collision of ps = 2:76 TeV, and the measurement of the D0 production in p{Pb NN collisions at ps = 5:02 TeV with the ALICE detector at the CERN Large Hadron NN Collider. TheD0 azimuthalanisotropywithrespecttothereactionplaneissensitivetothein- teractionofthecharmquarkswiththehigh-densitystrongly-interactingmediumformed in ultra-relativistic heavy-ion collisions and, thus, to the properties of this state of mat- ter. In particular, this observable allows to establish whether low-momentum charm quarks participate in the collective expansion of the system and whether they can reach thermal equilibrium with the medium constituents. The azimuthal anisotropy is quan- ti(cid:12)ed in terms of the second coe(cid:14)cient v in a Fourier expansion of the D0 azimuthal 2 distribution and in terms of the nuclear modi(cid:12)cation factor R , measured in the direc- AA tion of the reaction plane and orthogonal to it. The measurement of the D0 production in p{Pb collisions is crucial to disentangle the e(cid:11)ects induced by cold nuclear matter from the (cid:12)nal state e(cid:11)ects induced by the hot medium formed in Pb{Pb collisions. The D0 production is measured in both systems by reconstructing the two-prong hadronic decay D0 K (cid:25)+ in the central rapidity region, exploiting the separation of (cid:0) ! the decay vertex from the primary vertex. The raw signal is obtained with an invariant mass analysis, and corrected for selection and reconstruction e(cid:14)ciency. A positive elliptic (cid:13)ow v is observed in Pb{Pb collisions in the centrality class 2 30{50%, with a mean value of 0:204+0:099 in the interval 2 < p < 6 GeV/c, which 0:036 T (cid:0) decreases towards more central collisions. Consequently, the nuclear modi(cid:12)cation factor shows a stronger suppression in the direction orthogonal to the reaction plane. The v and the R measured in two azimuthal regions with respect to the reaction plane 2 AA are compared to theoretical calculations of charm quark transport and energy loss in high-density strongly-interacting matter. The models that include substantial elastic interactions with an expanding medium provide a good description of the observed anisotropy. The D0 nuclear modi(cid:12)cation factor R in p{Pb collisions is compatible with unity pPb within uncertainties. The measured R is compared to theoretical models including pPb initial state e(cid:11)ects, as well as to the nuclear modi(cid:12)cation factor measured in central Pb{Pb collisions. The D0 R results are consistent with the modi(cid:12)cation of the nu- pPb cleon parton distribution functions induced by the nuclear environment, and provide experimental evidence that the modi(cid:12)cation of the D meson momentum spectrum ob- served in Pb{Pb with respect to pp collisions is due to strong (cid:12)nal state e(cid:11)ects induced by the hot medium. Riassunto La tesi presenta la misura della produzione di mesoni D0 rispetto al piano di reazione in collisioni Pb{Pb all’energia nel centro di massa di ps = 2:76 TeV per coppia di NN nucleoni e la misura della produzione di D0 in collisioni p{Pb all’energia di ps = NN 5:02 TeV con l’esperimento ALICE situato al Large Hadron Collider del CERN. L’anisotropiaazimutaledeimesoniD0 rispettoalpianodireazione(cid:18)esensibileallein- terazionidelquarkcharmconilmezzoadaltadensit(cid:18)aefortementeinteragenteprodotto incollisionitraionipesantiadenergiaultra-relativisticae,diconseguenza,allepropriet(cid:18)a diquestostatodellamateria. Inparticolare,permettedistabilireseiquarkcharmparte- cipano all’espansione collettiva del sistema e se raggiungono l’equilibrio termico con i costituenti del mezzo. L’anisotropia azimutale (cid:18)e quanti(cid:12)cata tramite il secondo coe(cid:14)- ciente v dello sviluppo in serie di Fourier della distribuzione azimutale dei mesoni D0 e 2 tramite la misura del fattore di modi(cid:12)ca nucleare R nel piano di reazione e nella di- AA rezioneortogonaleadesso. LamisuradellaproduzionediD0 incollisionip{Pbpermette distudiareglie(cid:11)ettiindottidallamaterianuclearefredda,inmododapoterlidistinguere da quelli indotti dal mezzo denso fortemente interagente prodotto in collisioni Pb{Pb. La produzione di mesoni D0 (cid:18)e stata misurata attraverso la ricostruzione dei decadi- menti adronici a due corpi D0 K (cid:25)+ nella regione centrale di rapidit(cid:18)a, sfruttando la (cid:0) ! separazionedeiverticisecondarididecadimentorispettoalverticeprimariod’interazione. Il segnale (cid:18)e stato ottenuto attraverso un’analisi della distribuzione di massa invariante e corretto per l’e(cid:14)cienza di ricostruzione e selezione dei decadimenti. Il coe(cid:14)ciente di (cid:13)usso ellittico v dei mesoni D0 misurato in collisioni Pb{Pb nella 2 classe di centrali(cid:18)a 30{50% (cid:18)e positivo, il valore medio nell’intervallo 2 < p < 6 GeV/c T (cid:18)e pari a 0:204+0:099. Di conseguenza, il fattore di modi(cid:12)ca nucleare (cid:18)e minore nella 0:036 (cid:0) direzione ortogonale al piano di reazione. Il v osservato decresce all’aumentare della 2 centralit(cid:18)a delle collisioni. Il v e l’R misurato in due regioni azimutali ortogonali 2 AA rispetto al piano di reazione sono stati confrontati con calcoli teorici per il trasporto e la perdita di energia dei quark charm nella materia densa fortemente interagente. L’anisotropia osservata (cid:18)e descritta dai modelli che includono le interazioni elastiche tra i quark all’interno di un mezzo in espansione. Il fattore di modi(cid:12)ca nucleare dei mesoni D0 R (cid:18)e compatibile con l’unit(cid:18)a entro le pPb incertezze. R (cid:18)e stato confrontato con predizioni teoriche che descrivono gli e(cid:11)etti di pPb stato iniziale e con il fattore di modi(cid:12)ca nucleare misurato in collisioni Pb{Pb centrali. I risultati sono consistenti con e(cid:11)etti dovuti alla modi(cid:12)ca delle funzioni di distribuzione partonicheall’internodeinucleonilegatiedimostranochelamodi(cid:12)cadelladistribuzione del momento trasverso dei mesoni D osservata in collisioni Pb{Pb rispetto a quella in collisionipp(cid:18)edovutaallaperditadienergiadeiquarkcharmnelmezzodensofortemente interagente. Contents Introduction 1 1 Physics of Ultra-Relativistic Heavy-Ion Collisions 5 1.1 Quantum Chromodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Asymptotic Freedom and Con(cid:12)nement . . . . . . . . . . . . . . . . . . . . 7 1.2.1 Running Coupling Constant . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Lattice QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 The QCD Phase Diagram and the Quark-Gluon Plasma . . . . . . . . . . 10 1.5 Heavy-Ion Collisions and the QGP . . . . . . . . . . . . . . . . . . . . . . 14 1.5.1 Geometry of the Collision . . . . . . . . . . . . . . . . . . . . . . . 17 1.5.2 Global Event Properties . . . . . . . . . . . . . . . . . . . . . . . . 20 1.5.2.1 Particle Multiplicity . . . . . . . . . . . . . . . . . . . . . 20 1.5.2.2 Identical Boson Correlations . . . . . . . . . . . . . . . . 21 1.5.3 Photon Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.5.4 Hard Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.5.4.1 Quarkonium Suppression . . . . . . . . . . . . . . . . . . 23 2 Heavy-Flavour Probes in Heavy-Ion Collisions 27 2.1 Heavy-Flavour Production in pp Collisions. . . . . . . . . . . . . . . . . . 28 2.2 Heavy-Flavour Production in Pb{Pb and p{Pb Collisions . . . . . . . . . 29 2.3 Heavy Quarks as QGP Probes . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.1 In-Medium Energy Loss . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.2 Azimuthal Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.4 Initial-State E(cid:11)ects and the Role of pA Collisions . . . . . . . . . . . . . . 45 2.5 Objective of the Thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3 The ALICE Experiment at the LHC 53 3.1 The LHC Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.1.1 Acceleration Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.1.2 pp, p{Pb and Pb{Pb Collisions . . . . . . . . . . . . . . . . . . . . 55 3.2 The ALICE Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2.1 General Detector Layout. . . . . . . . . . . . . . . . . . . . . . . . 57 3.2.2 ITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2.3 TPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.2.4 TOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.3 Central-Barrel Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.3.1 Interaction Vertex Reconstruction with SPD . . . . . . . . . . . . 62 vii Contents viii 3.3.2 Track Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.3.3 Final Reconstruction of the Interaction Vertex . . . . . . . . . . . 65 3.4 Particle Identi(cid:12)cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.4.1 PID in the TPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.4.2 PID in the TOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.5 Impact Parameter Resolution . . . . . . . . . . . . . . . . . . . . . . . . . 69 4 Experimental Observables 73 4.1 Azimuthal Anisotropy of D0 Production in Pb{Pb Collisions . . . . . . . 73 4.1.1 Event-Plane De(cid:12)nition . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.1.2 Elliptic Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.1.3 R Azimuthal Dependence . . . . . . . . . . . . . . . . . . . . . 75 AA 4.2 D0 Production in p{Pb Collisions . . . . . . . . . . . . . . . . . . . . . . . 76 4.2.1 Production Cross Section and R . . . . . . . . . . . . . . . . . 77 pPb 4.2.2 Nuclear Modi(cid:12)cation Factor in Classes of Event Activity: Q . . 78 pPb 4.2.3 Self-normalized Yields . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.3 Proton{Proton Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5 D0 K (cid:25)+ Decay Reconstruction 83 (cid:0) ! 5.1 Data Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.2 Event-Plane Determination in Pb{Pb Collisions . . . . . . . . . . . . . . . 84 5.3 D0 Reconstruction and Selection . . . . . . . . . . . . . . . . . . . . . . . 86 5.3.1 Secondary Vertex Reconstruction . . . . . . . . . . . . . . . . . . . 87 5.3.2 Topological Selection Strategy . . . . . . . . . . . . . . . . . . . . 87 5.3.3 Particle Identi(cid:12)cation . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.4 Yield Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.4.1 Pb{Pb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.4.2 p{Pb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.5 Study of the \Re(cid:13)ected" Signal . . . . . . . . . . . . . . . . . . . . . . . . 104 5.6 E(cid:14)ciency Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.7 Correction for Feed-Down from B Decays . . . . . . . . . . . . . . . . . . 117 6 Systematic Uncertainties 121 6.1 Yield Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.2 Cut E(cid:14)ciency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 6.3 PID E(cid:14)ciency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.4 Monte Carlo p Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 T 6.5 Monte Carlo Multiplicity Distribution . . . . . . . . . . . . . . . . . . . . 137 6.6 Tracking E(cid:14)ciency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6.7 Feed-down Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6.8 Proton{Proton Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 6.9 Summary of Uncertainties on v . . . . . . . . . . . . . . . . . . . . . . . 144 2 6.10 Summary of Uncertainties on R In- and Out-Of-Plane . . . . . . . . . 145 AA 6.11 Summary of Uncertainties on the Cross Section in p{Pb Collisions and on R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 pPb 6.12 Summary of Uncertainties on Q and Relative Yields . . . . . . . . . . 149 pPb 7 Azimuthal Anisotropy of D0 Production in Pb{Pb Collisions 151 Contents ix 7.1 Elliptic Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 7.2 Comparison with Other Methods for v Measurement . . . . . . . . . . . 155 2 7.3 R In and Out of the Event Plane . . . . . . . . . . . . . . . . . . . . . 156 AA 7.4 Comparison with Model Calculations . . . . . . . . . . . . . . . . . . . . . 157 8 D0 Production in p{Pb Collisions 161 8.1 Production Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 8.2 Nuclear Modi(cid:12)cation Factor R . . . . . . . . . . . . . . . . . . . . . . 163 pPb 8.3 Q as a Function of Event Activity . . . . . . . . . . . . . . . . . . . . 166 pPb 8.4 Relative Yields as a Function of Multiplicity . . . . . . . . . . . . . . . . . 166 Conclusions 170 Bibliography 185 Acknowledgements 186

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.