ebook img

Maxwell's Equations and Electromagnetic Waves in Free Space PDF

116 Pages·2015·33.35 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Maxwell's Equations and Electromagnetic Waves in Free Space

Imrana Ashraf Zahid Quaid-i-Azam University Islamabad Pakistan Preparatory School to Winter College on Optics: Light : A Bridge between Earth and Space. 2nd February - 6th February 2015 Electrostatic : Revisited ¨  Magneto- static : Revisited ¨  Introduction to Maxwell’s equations ¨  Electrodynamics before Maxwell ¨  Maxwell’s correction to Ampere’s law ¨  Maxwell’s equations in vacuum ¨  Maxwell’s equations inside matter ¨  The Electromagnetic wave in free space ¨  29-Jan-15 2 E = Electric field ¨  D = Electric displacement ¨  B = Magnetic flux density ¨  H = Auxiliary field ¨  ρ= Charge density ¨  j = Current density ¨  µ (permeability of free space) = 4π×10-7T-m/A ¨  0 ε (permittivity of free space) = 8.854×10-12N-m2/ ¨  0 C2 c (speed of light) = 2.99792458×108 m/s ¨  29-Jan-15 3 Electrostatics ¨  §  Electrostatic field : Stationary charges produce electric fields that are constant in time. The theory of static charges is called electrostatics. Stationary charges Constant Electric field; 29-Jan-15 4 Coulombs Law Q r 1 qQ Test F rˆ Charge = q 2 4 r πε 0 Source Charge 2 C ε = 8.85×10−12 Permittivity of free space 0 2 N − m 29-Jan-15 5 y F = QE r q q i P 2 1 n q i q Field E(P) = ∑ i rˆ n ʹ′ Point 2 i r 4πε r i r 0 i=1 i E x - the electric field of the source charges. Physically E(P) Is force per unit z charge exerted on a test charge placed at P. 29-Jan-15 6 P r 1 rˆ E(P) = ∫ λdl 2 4πε r 0 Line λ is the line charge density P r 1 rˆ E(P) = ∫ σda 2 4πε r 0 Surface σ is the surface charge density 29-Jan-15 7 P r 1 rˆ E(P) = ∫ ρdτ 2 4πε r 0 Volume ρ is the volume charge density 29-Jan-15 8 The work done in moving a test charge Q in an electric field from point P to P with a constant speed. 1 2 W = Force • dis tan ce P 2 W = − ∫ QE • dl p 1 negative sign - work done is against the field. For any distribution of fixed charges. ∫ E • dl = 0 The electrostatic field is conservative 29-Jan-15 9 Stokes’s Theorem gives E 0 ∇ × = E V = −∇ where V is Scalar Potential The work done in moving a charge Q from infinity to a point P where potential is V 2 W QV = V = Work per unit charge = Volts = joules/Coulomb 29-Jan-15 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.