ebook img

Matrix Differential Calculus with Applications in - Jan Magnus PDF

468 Pages·2008·2.21 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Matrix Differential Calculus with Applications in - Jan Magnus

Matrix Differential Calculus with Applications in Statistics and Econometrics WILEY SERIES IN PROBABILITY AND STATISTICS Established by WALTER E. SHEWHART AND SAMUEL S. WILKS Editors: Vic Barnett, Noel A. C. Cressie, Nicholas, I. Fisher, Iain M. Johnstone, J. B. Kadane, David, G. Kendall, David W. Scott, Bernard W. Silverman, Adrian F. M. Smith, Jozef L. Teugels Editors Emeritus: Ralph A. Bradley, J. Stuart Hunter A complete list of the titles in this series appears at the end of this volume Matrix Differential Calculus with Applications in Statistics and Econometrics Third Edition JAN R. MAGNUS CentER, Tilburg University and HEINZ NEUDECKER Cesaro, Schagen JOHN WILEY & SONS Chichester • New York • Weinheim • Brisbane • Singapore • Toronto Copyright(cid:13)c1988,1999JohnWiley&SonsLtd, BaffinsLane,Chichester, WestSussexPO191UD,England National01243779777 International (+44)1243779777 Copyright(cid:13)c1999oftheEnglishandRussianLATEXfileCentER,TilburgUniversity, P.O.Box90153,5000LETilburg,TheNetherlands Copyright(cid:13)c2007oftheThirdEditionJanMagnusandHeinzNeudecker.Allrightsreserved. Publication dataforthe second (revised) edition LibraryofCongressCataloging in PublicationData Magnus,JanR. Matrixdifferentialcalculuswithapplicationsinstatisticsand econometrics/J.R.MagnusandH.Neudecker—Rev.ed. p. cm. Includesbibliographicalreferencesandindex. ISBN0-471-98632-1(alk.paper);ISBN0-471-98633-X(pbk:alk.paper) 1.Matrices. 2.DifferentialCalculus. 3.Statistics. 4.Econometrics. I.Neudecker,Heinz. II.Title. QA188.M345 1999 512.9′434—dc21 98-53556 CIP British LibraryCataloguing inPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN0-471-98632-1; 0-471-98633-X(pbk) Publication dataforthe third edition Thisisversion07/01. Lastupdate:16January2007. Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Part One — Matrices 1 Basic properties of vectors and matrices 3 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 Matrices: addition and multiplication . . . . . . . . . . . . . . . 4 4 The transpose of a matrix . . . . . . . . . . . . . . . . . . . . . 6 5 Square matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6 Linear forms and quadratic forms . . . . . . . . . . . . . . . . . 7 7 The rank of a matrix . . . . . . . . . . . . . . . . . . . . . . . . 8 8 The inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 9 The determinant . . . . . . . . . . . . . . . . . . . . . . . . . . 10 10 The trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 11 Partitioned matrices . . . . . . . . . . . . . . . . . . . . . . . . 11 12 Complex matrices . . . . . . . . . . . . . . . . . . . . . . . . . 13 13 Eigenvalues and eigenvectors . . . . . . . . . . . . . . . . . . . 14 14 Schur’s decomposition theorem . . . . . . . . . . . . . . . . . . 17 15 The Jordan decomposition . . . . . . . . . . . . . . . . . . . . . 18 16 The singular-value decomposition . . . . . . . . . . . . . . . . . 19 17 Further results concerning eigenvalues . . . . . . . . . . . . . . 20 18 Positive (semi)definite matrices . . . . . . . . . . . . . . . . . . 23 19 Three further results for positive definite matrices . . . . . . . 25 20 A useful result . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Miscellaneous exercises. . . . . . . . . . . . . . . . . . . . . . . . . . 27 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 Kronecker products, the vec operator and the Moore-Penrose inverse 31 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2 The Kronecker product . . . . . . . . . . . . . . . . . . . . . . 31 3 Eigenvalues of a Kronecker product . . . . . . . . . . . . . . . . 33 4 The vec operator . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5 The Moore-Penrose(MP) inverse . . . . . . . . . . . . . . . . . 36 6 Existence and uniqueness of the MP inverse . . . . . . . . . . . 37 v vi Contents 7 Some properties of the MP inverse . . . . . . . . . . . . . . . . 38 8 Further properties . . . . . . . . . . . . . . . . . . . . . . . . . 39 9 The solution of linear equation systems . . . . . . . . . . . . . 41 Miscellaneous exercises. . . . . . . . . . . . . . . . . . . . . . . . . . 43 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3 Miscellaneous matrix results 47 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2 The adjoint matrix . . . . . . . . . . . . . . . . . . . . . . . . . 47 3 Proof of Theorem 1. . . . . . . . . . . . . . . . . . . . . . . . . 49 4 Bordered determinants . . . . . . . . . . . . . . . . . . . . . . . 51 5 The matrix equation AX =0 . . . . . . . . . . . . . . . . . . . 51 6 The Hadamard product . . . . . . . . . . . . . . . . . . . . . . 53 7 The commutation matrix K . . . . . . . . . . . . . . . . . . 54 mn 8 The duplication matrix D . . . . . . . . . . . . . . . . . . . . 56 n 9 Relationship between D and D , I . . . . . . . . . . . . . . 58 n+1 n 10 Relationship between D and D , II . . . . . . . . . . . . . . 60 n+1 n 11 Conditions for a quadratic form to be positive (negative) sub- ject to linear constraints . . . . . . . . . . . . . . . . . . . . . . 61 12 Necessary and sufficient conditions for r(A:B)=r(A)+r(B) 64 13 The bordered Gramian matrix . . . . . . . . . . . . . . . . . . 66 14 The equations X A+X B′ =G ,X B =G . . . . . . . . . . 68 1 2 1 1 2 Miscellaneous exercises. . . . . . . . . . . . . . . . . . . . . . . . . . 71 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Part Two — Differentials: the theory 4 Mathematical preliminaries 75 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 2 Interior points and accumulation points . . . . . . . . . . . . . 75 3 Open and closed sets . . . . . . . . . . . . . . . . . . . . . . . . 76 4 The Bolzano-Weierstrasstheorem . . . . . . . . . . . . . . . . . 79 5 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6 The limit of a function . . . . . . . . . . . . . . . . . . . . . . . 81 7 Continuous functions and compactness . . . . . . . . . . . . . . 82 8 Convex sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 9 Convex and concave functions . . . . . . . . . . . . . . . . . . . 85 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5 Differentials and differentiability 89 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 2 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3 Differentiability and linear approximation . . . . . . . . . . . . 91 4 The differential of a vector function. . . . . . . . . . . . . . . . 93 5 Uniqueness of the differential . . . . . . . . . . . . . . . . . . . 95 6 Continuity of differentiable functions . . . . . . . . . . . . . . . 96 7 Partial derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 97 Contents vii 8 The first identification theorem . . . . . . . . . . . . . . . . . . 98 9 Existence of the differential, I . . . . . . . . . . . . . . . . . . . 99 10 Existence of the differential, II . . . . . . . . . . . . . . . . . . 101 11 Continuous differentiability . . . . . . . . . . . . . . . . . . . . 103 12 The chain rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 13 Cauchy invariance . . . . . . . . . . . . . . . . . . . . . . . . . 105 14 The mean-value theorem for real-valued functions . . . . . . . . 106 15 Matrix functions . . . . . . . . . . . . . . . . . . . . . . . . . . 107 16 Some remarks on notation . . . . . . . . . . . . . . . . . . . . . 109 Miscellaneous exercises. . . . . . . . . . . . . . . . . . . . . . . . . . 110 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6 The second differential 113 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 2 Second-order partial derivatives . . . . . . . . . . . . . . . . . . 113 3 The Hessian matrix. . . . . . . . . . . . . . . . . . . . . . . . . 114 4 Twice differentiability and second-order approximation,I . . . 115 5 Definition of twice differentiability . . . . . . . . . . . . . . . . 116 6 The second differential . . . . . . . . . . . . . . . . . . . . . . . 118 7 (Column) symmetry of the Hessian matrix . . . . . . . . . . . . 120 8 The second identification theorem . . . . . . . . . . . . . . . . 122 9 Twice differentiability and second-order approximation,II . . . 123 10 Chain rule for Hessian matrices . . . . . . . . . . . . . . . . . . 125 11 The analogue for second differentials . . . . . . . . . . . . . . . 126 12 Taylor’s theorem for real-valued functions . . . . . . . . . . . . 128 13 Higher-order differentials. . . . . . . . . . . . . . . . . . . . . . 129 14 Matrix functions . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7 Static optimization 133 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 2 Unconstrained optimization . . . . . . . . . . . . . . . . . . . . 134 3 The existence of absolute extrema . . . . . . . . . . . . . . . . 135 4 Necessary conditions for a local minimum . . . . . . . . . . . . 137 5 Sufficient conditions for a local minimum: first-derivative test . 138 6 Sufficient conditions for a local minimum: second-derivative test140 7 Characterizationof differentiable convex functions . . . . . . . 142 8 Characterizationof twice differentiable convex functions . . . . 145 9 Sufficient conditions for an absolute minimum . . . . . . . . . . 147 10 Monotonic transformations . . . . . . . . . . . . . . . . . . . . 147 11 Optimization subject to constraints . . . . . . . . . . . . . . . . 148 12 Necessary conditions for a local minimum under constraints . . 149 13 Sufficient conditions for a local minimum under constraints . . 154 14 Sufficient conditions for an absolute minimum under constraints158 15 A note on constraints in matrix form . . . . . . . . . . . . . . . 159 16 Economic interpretation of Lagrange multipliers. . . . . . . . . 160 Appendix: the implicit function theorem . . . . . . . . . . . . . . . . 162 viii Contents Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Part Three — Differentials: the practice 8 Some important differentials 167 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 2 Fundamental rules of differential calculus . . . . . . . . . . . . 167 3 The differential of a determinant . . . . . . . . . . . . . . . . . 169 4 The differential of an inverse . . . . . . . . . . . . . . . . . . . 171 5 Differential of the Moore-Penroseinverse . . . . . . . . . . . . . 172 6 The differential of the adjoint matrix . . . . . . . . . . . . . . . 175 7 On differentiating eigenvalues and eigenvectors . . . . . . . . . 177 8 The differential of eigenvalues and eigenvectors:symmetric case 179 9 The differential of eigenvalues and eigenvectors:complex case . 182 10 Two alternative expressions for dλ . . . . . . . . . . . . . . . . 185 11 Second differential of the eigenvalue function . . . . . . . . . . 188 12 Multiple eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . 189 Miscellaneous exercises. . . . . . . . . . . . . . . . . . . . . . . . . . 189 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 9 First-order differentials and Jacobian matrices 193 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 3 Bad notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 4 Good notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 5 Identification of Jacobian matrices . . . . . . . . . . . . . . . . 198 6 The first identification table . . . . . . . . . . . . . . . . . . . . 198 7 Partitioning of the derivative . . . . . . . . . . . . . . . . . . . 199 8 Scalar functions of a vector . . . . . . . . . . . . . . . . . . . . 200 9 Scalar functions of a matrix, I: trace . . . . . . . . . . . . . . . 200 10 Scalar functions of a matrix, II: determinant. . . . . . . . . . . 202 11 Scalar functions of a matrix, III: eigenvalue . . . . . . . . . . . 204 12 Two examples of vector functions . . . . . . . . . . . . . . . . . 204 13 Matrix functions . . . . . . . . . . . . . . . . . . . . . . . . . . 205 14 Kronecker products . . . . . . . . . . . . . . . . . . . . . . . . . 208 15 Some other problems . . . . . . . . . . . . . . . . . . . . . . . . 210 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 10 Second-order differentials and Hessian matrices 213 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 2 The Hessian matrix of a matrix function . . . . . . . . . . . . . 213 3 Identification of Hessian matrices . . . . . . . . . . . . . . . . . 214 4 The second identification table . . . . . . . . . . . . . . . . . . 215 5 An explicit formula for the Hessian matrix . . . . . . . . . . . . 217 6 Scalar functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 7 Vector functions . . . . . . . . . . . . . . . . . . . . . . . . . . 219 8 Matrix functions, I . . . . . . . . . . . . . . . . . . . . . . . . . 220 Contents ix 9 Matrix functions, II . . . . . . . . . . . . . . . . . . . . . . . . 221 Part Four — Inequalities 11 Inequalities 225 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 2 The Cauchy-Schwarzinequality . . . . . . . . . . . . . . . . . . 225 3 Matrix analogues of the Cauchy-Schwarz inequality . . . . . . . 227 4 The theorem of the arithmetic and geometric means . . . . . . 228 5 The Rayleigh quotient . . . . . . . . . . . . . . . . . . . . . . . 230 6 Concavity of λ , convexity of λ . . . . . . . . . . . . . . . . . 231 1 n 7 Variational description of eigenvalues . . . . . . . . . . . . . . . 232 8 Fischer’s min-max theorem . . . . . . . . . . . . . . . . . . . . 233 9 Monotonicity of the eigenvalues . . . . . . . . . . . . . . . . . . 235 10 The Poincar´eseparation theorem . . . . . . . . . . . . . . . . . 236 11 Two corollaries of Poincar´e’s theorem . . . . . . . . . . . . . . 237 12 Further consequences of the Poincar´e theorem . . . . . . . . . . 238 13 Multiplicative version . . . . . . . . . . . . . . . . . . . . . . . 239 14 The maximum of a bilinear form . . . . . . . . . . . . . . . . . 241 15 Hadamard’s inequality . . . . . . . . . . . . . . . . . . . . . . . 242 16 An interlude: Karamata’s inequality . . . . . . . . . . . . . . . 243 17 Karamata’s inequality applied to eigenvalues . . . . . . . . . . 245 18 An inequality concerning positive semidefinite matrices. . . . . 245 19 A representation theorem for ( ap)1/p . . . . . . . . . . . . . 246 i 20 A representation theorem for (trAp)1/p . . . . . . . . . . . . . . 248 P 21 H¨older’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . 249 22 Concavity of logA . . . . . . . . . . . . . . . . . . . . . . . . . 250 | | 23 Minkowski’s inequality . . . . . . . . . . . . . . . . . . . . . . . 252 24 Quasilinear representation of A1/n . . . . . . . . . . . . . . . . 254 | | 25 Minkowski’s determinant theorem. . . . . . . . . . . . . . . . . 256 26 Weighted means of order p. . . . . . . . . . . . . . . . . . . . . 256 27 Schl¨omilch’s inequality . . . . . . . . . . . . . . . . . . . . . . . 259 28 Curvature properties of M (x,a) . . . . . . . . . . . . . . . . . 260 p 29 Least squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 30 Generalized least squares . . . . . . . . . . . . . . . . . . . . . 263 31 Restricted least squares . . . . . . . . . . . . . . . . . . . . . . 263 32 Restricted least squares: matrix version . . . . . . . . . . . . . 265 Miscellaneous exercises. . . . . . . . . . . . . . . . . . . . . . . . . . 266 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 Part Five — The linear model 12 Statistical preliminaries 275 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 2 The cumulative distribution function . . . . . . . . . . . . . . . 275 3 The joint density function . . . . . . . . . . . . . . . . . . . . . 276 4 Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 x Contents 5 Variance and covariance . . . . . . . . . . . . . . . . . . . . . . 277 6 Independence of two random variables . . . . . . . . . . . . . . 279 7 Independence of n random variables . . . . . . . . . . . . . . . 281 8 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 9 The one-dimensional normal distribution . . . . . . . . . . . . . 281 10 The multivariate normal distribution . . . . . . . . . . . . . . . 282 11 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 Miscellaneous exercises. . . . . . . . . . . . . . . . . . . . . . . . . . 285 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 13 The linear regression model 287 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 2 Affine minimum-trace unbiased estimation . . . . . . . . . . . . 288 3 The Gauss-Markovtheorem . . . . . . . . . . . . . . . . . . . . 289 4 The method of least squares . . . . . . . . . . . . . . . . . . . . 292 5 Aitken’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 293 6 Multicollinearity . . . . . . . . . . . . . . . . . . . . . . . . . . 295 7 Estimable functions . . . . . . . . . . . . . . . . . . . . . . . . 297 8 Linear constraints: the case (R′) (X′) . . . . . . . . . . 299 M ⊂M 9 Linear constraints: the general case . . . . . . . . . . . . . . . . 302 10 Linear constraints: the case (R′) (X′)= 0 . . . . . . . 305 M ∩M { } 11 A singular variance matrix: the case (X) (V) . . . . . . 306 12 A singular variance matrix: the case Mr(X′V+⊂XM)=r(X) . . . . 308 13 A singular variance matrix: the general case, I . . . . . . . . . . 309 14 Explicit and implicit linear constraints . . . . . . . . . . . . . . 310 15 The general linear model, I . . . . . . . . . . . . . . . . . . . . 313 16 A singular variance matrix: the general case, II . . . . . . . . . 314 17 The general linear model, II . . . . . . . . . . . . . . . . . . . . 317 18 Generalized least squares . . . . . . . . . . . . . . . . . . . . . 318 19 Restricted least squares . . . . . . . . . . . . . . . . . . . . . . 319 Miscellaneous exercises. . . . . . . . . . . . . . . . . . . . . . . . . . 321 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 14 Further topics in the linear model 323 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 2 Best quadratic unbiased estimation of σ2 . . . . . . . . . . . . 323 3 The best quadratic and positive unbiased estimator of σ2 . . . 324 4 The best quadratic unbiased estimator of σ2 . . . . . . . . . . . 326 5 Best quadratic invariant estimation of σ2 . . . . . . . . . . . . 329 6 The best quadratic and positive invariant estimator of σ2 . . . 330 7 The best quadratic invariant estimator of σ2 . . . . . . . . . . . 331 8 Best quadratic unbiased estimation: multivariate normal case . 332 9 Bounds for the bias of the least squares estimator of σ2, I . . . 335 10 Bounds for the bias of the least squares estimator of σ2, II . . . 336 11 The prediction of disturbances . . . . . . . . . . . . . . . . . . 338 12 Best linear unbiased predictors with scalar variance matrix . . 339 13 Best linear unbiased predictors with fixed variance matrix, I . . 341

Description:
Matrices. 2. Differential Calculus. 3. Statistics. 1 Basic properties of vectors and matrices. 3. 1 .. Economic interpretation of Lagrange multipliers . 160 Let A (m × n), B (n × p) and C (n × p) be matrices and let x (n × 1) be a vector.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.