ebook img

Mathematical principles of the Internet. Vol.2 Mathematical concepts PDF

724 Pages·2019·3.715 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematical principles of the Internet. Vol.2 Mathematical concepts

Mathematical Principles of the Internet Volume 2 Mathematical Concepts Mathematical Principles of the Internet Volume 2: Mathematical Concepts Nirdosh Bhatnagar CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2019 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper International Standard Book Number Volume I: 978-1-1385-05483 (Hardback) International Standard Book Number Volume II: 978-1-1385-05513 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid- ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including pho- tocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com ...tothememoryofmyparents: Smt.ShakuntlaBhatnagar&ShriRaiChandulalBhatnagar Contents Preface ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: xv ListofSymbols :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: xxv GreekSymbols ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::xxxiii 1. NumberTheory:::::::::::::::::::::::::::::::::::::::::::::::::::::::: 1 1.1 Introduction ......................................................... 3 1.2 Sets ................................................................ 3 1.2.1 SetOperations ............................................... 5 1.2.2 BoundedSets ................................................ 7 1.2.3 IntervalNotation ............................................. 7 1.3 Functions ........................................................... 8 1.3.1 Sequences................................................... 8 1.3.2 PermutationMappings ........................................ 9 1.3.3 PermutationMatrices ......................................... 10 1.3.4 UnaryandBinaryOperations................................... 11 1.3.5 LogicalOperations ........................................... 11 1.4 BasicNumber-TheoreticConcepts ...................................... 12 1.4.1 Countability ................................................. 12 1.4.2 Divisibility .................................................. 12 1.4.3 PrimeNumbers .............................................. 12 1.4.4 GreatestCommonDivisor ..................................... 13 1.4.5 ContinuedFractions .......................................... 17 1.5 CongruenceArithmetic................................................ 20 1.5.1 ChineseRemainderTheorem................................... 23 1.5.2 MoebiusFunction ............................................ 24 1.5.3 Euler’sPhi-Function .......................................... 26 1.5.4 ModularArithmetic........................................... 28 1.5.5 QuadraticResidues ........................................... 30 1.5.6 JacobiSymbol ............................................... 32 viii Contents 1.6 CyclotomicPolynomials............................................... 33 1.7 SomeCombinatorics.................................................. 35 1.7.1 PrincipleofInclusionandExclusion............................. 35 1.7.2 StirlingNumbers ............................................. 36 ReferenceNotes ........................................................... 37 Problems ................................................................. 37 References................................................................ 42 2. AbstractAlgebra::::::::::::::::::::::::::::::::::::::::::::::::::::::: 45 2.1 Introduction ......................................................... 47 2.2 AlgebraicStructures .................................................. 47 2.2.1 Groups ..................................................... 48 2.2.2 Rings....................................................... 52 2.2.3 SubringsandIdeals ........................................... 53 2.2.4 Fields....................................................... 55 2.2.5 PolynomialRings ............................................ 57 2.2.6 BooleanAlgebra ............................................. 62 2.3 MoreGroupTheory .................................................. 63 2.4 VectorSpacesoverFields.............................................. 66 2.5 LinearMappings ..................................................... 70 2.6 StructureofFiniteFields .............................................. 71 2.6.1 Construction................................................. 73 2.6.2 MinimalPolynomials ......................................... 76 2.6.3 IrreduciblePolynomials ....................................... 79 2.6.4 FactoringPolynomials......................................... 80 2.6.5 Examples ................................................... 81 2.7 RootsofUnityinFiniteField .......................................... 86 2.8 EllipticCurves....................................................... 87 2.8.1 EllipticCurvesoverRealFields................................. 90 2.8.2 EllipticCurvesoverFiniteFields................................ 95 2.8.3 EllipticCurvesoverZp;p>3.................................. 96 2.8.4 EllipticCurvesoverGF ..................................... 99 2n 2.9 HyperellipticCurves.................................................. 100 2.9.1 BasicsofHyperellipticCurves.................................. 100 2.9.2 Polynomials,RationalFunctions,Zeros,andPoles................. 102 2.9.3 Divisors..................................................... 105 2.9.4 MumfordRepresentationofDivisors ............................ 111 2.9.5 OrderoftheJacobian ......................................... 117 ReferenceNotes ........................................................... 117 Problems ................................................................. 118 References................................................................ 132 3. MatricesandDeterminants :::::::::::::::::::::::::::::::::::::::::::::: 135 3.1 Introduction ......................................................... 137 3.2 BasicMatrixTheory.................................................. 137 3.2.1 BasicMatrixOperations....................................... 139 3.2.2 DifferentTypesofMatrices .................................... 140 Contents ix 3.2.3 MatrixNorm ................................................ 142 3.3 Determinants ........................................................ 144 3.3.1 Definitions .................................................. 144 3.3.2 VandermondeDeterminant..................................... 146 3.3.3 Binet-CauchyTheorem........................................ 146 3.4 MoreMatrixTheory .................................................. 148 3.4.1 RankofaMatrix ............................................. 148 3.4.2 AdjointofaSquareMatrix..................................... 149 3.4.3 NullityofaMatrix............................................ 149 3.4.4 SystemofLinearEquations .................................... 150 3.4.5 MatrixInversionLemma....................................... 151 3.4.6 TensorProductofMatrices..................................... 151 3.5 MatricesasLinearTransformations ..................................... 152 3.6 SpectralAnalysisofMatrices .......................................... 155 3.7 HermitianMatricesandTheirEigenstructures............................. 158 3.8 Perron-FrobeniusTheory .............................................. 161 3.8.1 PositiveMatrices ............................................. 162 3.8.2 NonnegativeMatrices ......................................... 163 3.8.3 StochasticMatrices ........................................... 165 3.9 SingularValueDecomposition.......................................... 165 3.10 MatrixCalculus...................................................... 168 3.11 RandomMatrices .................................................... 171 3.11.1 GaussianOrthogonalEnsemble................................. 171 3.11.2 Wigner’sSemicircleLaw ...................................... 173 ReferenceNotes ........................................................... 177 Problems ................................................................. 177 References................................................................ 201 4. GraphTheory ::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 203 4.1 Introduction ......................................................... 205 4.2 UndirectedandDirectedGraphs ........................................ 205 4.2.1 UndirectedGraphs............................................ 206 4.2.2 DirectedGraphs.............................................. 207 4.3 SpecialGraphs....................................................... 209 4.4 GraphOperations,Representations,andTransformations ................... 211 4.4.1 GraphOperations............................................. 211 4.4.2 GraphRepresentations ........................................ 212 4.4.3 GraphTransformations ........................................ 214 4.5 PlaneandPlanarGraphs............................................... 215 4.6 SomeUsefulObservations............................................. 218 4.7 SpanningTrees ...................................................... 220 4.7.1 Matrix-TreeTheorem ......................................... 220 4.7.2 NumericalAlgorithm ......................................... 222 4.7.3 NumberofLabeledTrees ...................................... 224 4.7.4 ComputationofNumberofSpanningTrees ....................... 225 4.7.5 GenerationofSpanningTreesofaGraph......................... 225 4.8 The -core, -crust,and -shellofaGraph.............................. 226 K K K x Contents 4.9 Matroids............................................................ 228 4.10 SpectralAnalysisofGraphs............................................ 232 4.10.1 SpectralAnalysisviaAdjacencyMatrix.......................... 232 4.10.2 LaplacianSpectralAnalysis .................................... 235 ReferenceNotes ........................................................... 235 Problems ................................................................. 236 References................................................................ 241 5. Geometry ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 243 5.1 Introduction ......................................................... 245 5.2 EuclideanGeometry .................................................. 246 5.2.1 RequirementsforanAxiomaticSystem .......................... 246 5.2.2 AxiomaticFoundationofEuclideanGeometry .................... 247 5.2.3 BasicDefinitionsandConstructions ............................. 249 5.3 CircleInversion ...................................................... 251 5.4 ElementaryDifferentialGeometry ...................................... 254 5.4.1 MathematicalPreliminaries .................................... 254 5.4.2 LinesandPlanes ............................................. 256 5.4.3 CurvesinPlaneandSpace ..................................... 257 5.5 BasicsofSurfaceGeometry............................................ 263 5.5.1 Preliminaries ................................................ 263 5.5.2 FirstFundamentalForm ....................................... 265 5.5.3 ConformalMappingofSurfaces ................................ 267 5.5.4 SecondFundamentalForm..................................... 268 5.6 PropertiesofSurfaces................................................. 271 5.6.1 CurvesonaSurface........................................... 272 5.6.2 LocalIsometryofSurfaces..................................... 278 5.6.3 GeodesicsonaSurface ........................................ 279 5.7 PreludetoHyperbolicGeometry........................................ 284 5.7.1 SurfacesofRevolution ........................................ 285 5.7.2 ConstantGaussianCurvatureSurfaces ........................... 287 5.7.3 IsotropicCurves.............................................. 288 5.7.4 AConformalMappingPerspective .............................. 289 5.8 HyperbolicGeometry ................................................. 292 5.8.1 UpperHalf-PlaneModel....................................... 293 5.8.2 IsometriesofUpperHalf-PlaneModel ........................... 295 5.8.3 PoincaréDiscModel.......................................... 297 5.8.4 SurfaceofDifferentConstantCurvature.......................... 301 5.8.5 Tessellations................................................. 301 5.8.6 GeometricConstructions ...................................... 302 ReferenceNotes ........................................................... 304 Problems ................................................................. 304 References................................................................ 346

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.