ebook img

Mathematical Approaches to Molecular Structural Biology PDF

311 Pages·2022·4.262 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematical Approaches to Molecular Structural Biology

Mathematical Approaches to Molecular Structural Biology This pageintentionallyleftblank Mathematical Approaches to Molecular Structural Biology Subrata Pal AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom Copyright©2023ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuch astheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions. Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including partiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein. ISBN:978-0-323-90397-4 ForInformationonallAcademicPresspublications visitourwebsiteathttps://www.elsevier.com/books-and-journals Publisher:AndreG.Wolff AcquisitionsEditor:MichelleFisher EditorialProjectManager:TracyI.Tufaga ProductionProjectManager:SwapnaSrinivasan ElsevierCoverDesigner:VickyPearson CoverImageDesigner:SharmishthaPal TypesetbyMPSLimited,Chennai,India Dedication To my parents This page intentionallyleftblank Contents Aboutthe author.......................................................................................................xi Preface...................................................................................................................xiii Acknowledgments...................................................................................................xv Table of symbols..................................................................................................xvii CHAPTER 1 Mathematical preliminaries.........................................1 1.1 Functions........................................................................................1 1.1.1 Algebraic functions.............................................................1 1.1.2 Trigonometric functions......................................................3 1.1.3 Exponentialandlogarithmic functions...............................5 1.1.4 Complex number andfunctions..........................................6 1.2 Vectors............................................................................................8 1.2.1 Concept ofvectorinphysics..............................................9 1.2.2 Vector asan ordered set ofnumbers................................11 1.2.3 Mathematicalviewpointofvector....................................13 1.3 Matrices anddeterminants...........................................................14 1.3.1 Systems oflinear equations..............................................14 1.3.2 Matrices.............................................................................20 1.3.3 Determinants.....................................................................26 1.4 Calculus........................................................................................29 1.4.1 Differentiation...................................................................29 1.4.2 Integration.........................................................................34 1.4.3 Multivariate function........................................................38 1.5 Series andlimits...........................................................................40 1.5.1 Taylor series......................................................................41 1.5.2 Fourier series.....................................................................42 Further reading............................................................................45 CHAPTER 2 Vector spaces and matrices.......................................47 2.1 Linear systems..............................................................................47 2.2 Sets and subsets............................................................................48 2.2.1 Set......................................................................................49 2.2.2 Subset................................................................................51 2.3 Vector spacesand subspaces.......................................................53 2.3.1 Vector space......................................................................53 2.3.2 Vector subspaces...............................................................55 2.3.3 Nullspace/rowspace/column space.................................57 vii viii Contents 2.4 Liner combination/linear independence.......................................60 2.5 Basis vectors.................................................................................64 2.6 Dimension and rank.....................................................................68 2.7 Inner productspace......................................................................73 2.8 Orthogonality................................................................................78 2.9 Mappingand transformation........................................................90 2.10 Changeof basis............................................................................98 Further reading..........................................................................101 CHAPTER 3 Matrix decomposition...............................................103 3.1 Eigensystemsfrom different perspectives.................................103 3.1.1 Astable distributionvector.............................................103 3.1.2 System oflinear differential equations...........................105 3.2 Eigensystem basics.....................................................................107 3.3 Singular value decomposition....................................................129 Further Reading.........................................................................136 CHAPTER 4 Vector calculus.........................................................137 4.1 Derivatives of univariatefunctions............................................137 4.2 Derivatives of multivariate functions........................................139 4.3 Gradients ofscalar-and vector-valued functions......................144 4.4 Gradients ofmatrices.................................................................149 4.5 Higher-order derivates (cid:1)Hessian.............................................150 4.6 Linearization and multivariate Taylorseries.............................153 Further Reading.........................................................................157 CHAPTER 5 Integral transform.....................................................159 5.1 Fourier transform........................................................................159 5.2 Dirac delta function....................................................................162 5.3 Convolution and deconvolution.................................................166 5.4 Discrete Fourier transform.........................................................168 5.5 Laplacetransform.......................................................................170 Further reading..........................................................................172 CHAPTER 6 Probability and statistics..........................................173 6.1 Probability—definitions andproperties.....................................173 6.1.1 Probabilityfunction........................................................173 6.1.2 Conditional probability...................................................175 6.2 Randomvariables anddistribution............................................177 6.2.1 Discreterandomvariable................................................177 Contents ix 6.2.2 Continuous random variable...........................................181 6.2.3 Transformation ofrandomvariables..............................185 6.2.4 Expectation andvariance................................................186 6.3 Multivariate distribution.............................................................189 6.3.1 Bivariate distribution......................................................189 6.3.2 Generalized multivariate distribution.............................194 6.4 Covariance andcorrelation........................................................195 6.5 Principal component analysis.....................................................202 Further reading..........................................................................210 CHAPTER 7 X-ray crystallography................................................211 7.1 X-ray scattering..........................................................................211 7.1.1 Electromagnetic waves...................................................212 7.1.2 Thomson scattering.........................................................214 7.1.3 Compton scattering.........................................................216 7.2 Scattering by anatom................................................................218 7.3 Diffraction froma crystal (cid:1)Laue equations............................221 7.3.1 Lattice andreciprocal lattice..........................................223 7.3.2 Structure factor................................................................224 7.3.3 Bragg’s law.....................................................................225 7.4 Diffraction andFourier transform..............................................226 7.5 Convolution anddiffraction.......................................................227 7.6 The electron density equation....................................................228 7.6.1 Phase problem and the Patterson function.....................229 7.6.2 Isomorphous replacement...............................................230 7.6.3 Electron density sharpening............................................230 Further reading..........................................................................232 CHAPTER 8 Cryo-electron microscopy ........................................235 8.1 Quantum physics........................................................................235 8.1.1 Wave(cid:1)particle duality....................................................235 8.1.2 Schro¨dingerequation......................................................236 8.1.3 Hamiltonian.....................................................................237 8.2 Wave optics ofelectrons—scattering........................................239 8.3 Theory ofimage formation........................................................242 8.3.1 Electrodynamics oflens system.....................................242 8.3.2 Image formation..............................................................243 8.4 Image processing by multivariate statistical analysis—principalcomponent analysis....................................245 8.4.1 Hyperspace anddata cloud.............................................245

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.