ebook img

Luis Alfredo Anchordoqui PDF

44 Pages·2014·1.77 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Luis Alfredo Anchordoqui

HindawiPublishingCorporation AdvancesinHighEnergyPhysics Volume2012,ArticleID129879,43pages doi:10.1155/2012/129879 Review Article (cid:2) (cid:3) × (cid:2) (cid:3) × (cid:2) (cid:3) × (cid:2) (cid:3) U 3 Sp 1 U 1 U 1 C L L R Luis Alfredo Anchordoqui DepartmentofPhysics,UniversityofWisconsin-Milwaukee,P.O.Box413,Milwaukee,WI53201,USA CorrespondenceshouldbeaddressedtoLuisAlfredoAnchordoqui,[email protected] Received30August2011;Revised17October2011;Accepted20October2011 AcademicEditor:IraRothstein Copyrightq2012LuisAlfredoAnchordoqui. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproductioninanymedium,providedtheoriginalworkisproperlycited. WeoutlinethebasicsettingoftheU(cid:2)3(cid:3) ×Sp(cid:2)1(cid:3) ×U(cid:2)1(cid:3) ×U(cid:2)1(cid:3) gaugetheoryandreviewthe C L L R associatedphenomenologicalaspectsrelatedtoexperimentalsearchesfornewphysicsathadron colliders. In this construction, there are two massive Z(cid:2)-gauge bosons, which can be naturally associatedwithbaryonnumberB andB−L(cid:2)Lbeingleptonnumber(cid:3).Wediscussthepotential signals which may be accessible at the Tevatron and at the Large Hadron Collider (cid:2)LHC(cid:3). In particular,weprovidetherelevantcrosssectionsfortheproductionofZ(cid:2)-gaugebosonsintheTeV region,leadingtopredictionsthatarewithinreachofthepresentorthenextLHCrun.Afterthatwe directattentiontoembeddingthegaugetheoryintotheframeworkofstringtheory.Weconsider extensionsofthestandardmodelbasedonopenstringsendingonD-branes,withgaugebosons duetostringsattachedtostacksofD-branesandchiralmatterduetostringsstretchingbetween intersectingD-branes.AssumingthatthefundamentalstringmassscaleisintheTeVrangeand thetheoryisweaklycoupled,weexploretheLHCdiscoverypotentialforReggeexcitations. 1. General Idea Therecentdevelopmentinhighenergyphysicshasputagreatemphasisongaugetheories; indeed the general theory of fundamental interactions, rather unimaginatively named the Standard Model (cid:2)SM(cid:3), is completely formulated in this framework. The SM agrees remarkably well with current data but has rather troubling weaknesses and appears to be asomewhatadhoctheory.ItisthoughtthattheSMmaybeasubsetofamorefundamental gaugetheory.Severalmodelshavebeenexplored,usingthefundamentalprincipleofgauge invarianceasguidepost.Thepurposeofthispaperistooutlinethemainphenomenological aspectsofonesuchmodels:U(cid:2)3(cid:3) ×Sp(cid:2)1(cid:3) ×U(cid:2)1(cid:3) ×U(cid:2)1(cid:3) .Thefirstaimistosurveythebasic C L L R featuresofthegaugetheory’spredictionregardingthenewmasssectorandcouplings.These features lead to new phenomena that can be probed using data from the Tevatron and the LargeHadronCollider(cid:2)LHC(cid:3).Inparticularthetheorypredictsthatadditionalgaugebosons 2 AdvancesinHighEnergyPhysics thatwewillshowareaccessibleatLHCenergies.Havingsoidentifiedthegeneralproperties of the theory, we focus on the potential to embed this model into a string theory. We show thiscanbeaccomplishedwithinthecontextofD-braneTeV-scalecompactifications.Finally, weexplorepredictionsinheritedfrompropertiesoftheoverarchingstringtheory. The SM is a spontaneously broken Yang-Mills theory with gauge group SU(cid:2)3(cid:3) × C SU(cid:2)2(cid:3) ×U(cid:2)1(cid:3) .Matterintheformofquarksandleptons(cid:2)i.e.,SU(cid:2)3(cid:3) tripletsandsinglets, L Y C resp.(cid:3) is arranged in three families (cid:2)i (cid:4) 1,2,3(cid:3) of left-handed fermion doublets (cid:2)of SU(cid:2)2(cid:3) (cid:3) L and right-handed fermion singlets. Each family i contains chiral gauge representations of left-handed quarks Qi (cid:4) (cid:2)3,2(cid:3)1/6 and leptons Li (cid:4) (cid:2)1,2(cid:3)−1/2 as well as right-handed up and down quarks, Ui (cid:4) (cid:2)3,1(cid:3)2/3 and Di (cid:4) (cid:2)3,1(cid:3)−1/3, respectively, and the right-handed lepton Ei (cid:4) (cid:2)1,1(cid:3)−1. The hypercharge Y is shown as a subscript of the SU(cid:2)3(cid:3)C × SU(cid:2)2(cid:3)L gauge representation (cid:2)A,B(cid:3). The neutrino is part of the left-handed lepton representation L and i doesnothavearight-handedcounterpart. TheSMLagrangianexhibitsanaccidentalglobalsymmetryU(cid:2)1(cid:3) ×U(cid:2)1(cid:3) ×U(cid:2)1(cid:3) × B e μ U(cid:2)1(cid:3) ,whereU(cid:2)1(cid:3) isthebaryonnumbersymmetryandU(cid:2)1(cid:3) (cid:2)α (cid:4) e,μ,τ(cid:3)arethreelepton τ B α flavor symmetries, with total lepton number given by L (cid:4) L (cid:5)L (cid:5)L . It is an accidental e μ τ symmetry because we do not impose it. It is a consequence of the gauge symmetries and the low energy particle content. It is possible (cid:2)but not necessary(cid:3), however, that effective interaction operators induced by the high energy content of the underlying theory may violatesectorsoftheglobalsymmetry. TheelectroweaksubgroupSU (cid:2)2(cid:3)×U (cid:2)1(cid:3)isspontaneouslybrokentotheelectromag- L Y neticU(cid:2)1(cid:3) bytheHiggsdoubletH (cid:4) (cid:2)1,2(cid:3) whichreceivesavacuumexpectationvalue EM 1/2 v/(cid:4)0inasuitablepotential.ThreeofthefourcomponentsofthecomplexHiggsare“eaten” by the W± and Z bosons, which are superpositions of the gauge bosons Wa of SU(cid:2)2(cid:3) and μ L B ofU(cid:2)1(cid:3) , μ Y W± (cid:4) √1 W1∓ √i W2, μ μ μ 2 2 (cid:2)1.1(cid:3) Z (cid:4)cosθ W3−sinθ B , μ W μ W μ with masses M2 (cid:4) παv2/sin2θ , M2 (cid:4) M2 /cos2θ , and α (cid:5) 1/128 at Q2 (cid:4) M2 . The W W Z W W W fourthvectorfield, A (cid:4)sinθ W3(cid:5)cosθ B , (cid:2)1.2(cid:3) μ W μ W μ persistsmassless,andtheremainingHiggscomponentisleftasaU(cid:2)1(cid:3) neutralrealscalar. EM The measured values M (cid:5) 80.4GeV and M (cid:5) 91.2GeV fix the weak mixing angle at W Z sin2θ (cid:5)0.23andtheHiggsvacuumexpectationvalueat(cid:6)H(cid:7)(cid:4)v (cid:5)246GeV(cid:7)1(cid:8). W Fermion masses arise from Yukawa interactions, which couple the right-handed fermionsingletstotheleft-handedfermiondoubletsandtheHiggsfield, L(cid:4)−Yij QHD −Yij(cid:6)abQ H†U −YijLHE (cid:5)h.c., (cid:2)1.3(cid:3) d i j u ia b j (cid:7) i j where (cid:6)ab is the antisymmetric tensor. In the process of spontaneous symmetry breaking, √ these interactions lead to charged fermion masses, mij (cid:4) Yijv/ 2, but leave the neutrinos f f AdvancesinHighEnergyPhysics 3 massless(cid:7)2(cid:8).(cid:2)Onemightthinkthatneutrinomassescouldarisefromloopcorrections.This, however, cannot be the case, because the only possible neutrino mass term that can be constructedwiththeSMfieldsisthebilinearLLC whichviolatesthetotalleptonsymmetry i j by two units (cid:2)LC (cid:4) CLT(cid:3). As mentioned above, total lepton number is a global symmetry i i of the model and therefore L-violating terms cannot be induced by loop corrections. Furthermore, the U(cid:2)1(cid:3)B−L subgroup is nonanomalous, and therefore B −L violating terms cannotbeinducedevenbynonperturbativecorrections.ItfollowsthattheSMpredictsthat neutrinosarestrictlymassless.(cid:3)Experimentalevidenceforneutrinoflavoroscillationsbythe mixing of different mass eigenstates implies that the SM has to be extended (cid:7)3(cid:8). The most economic way to get massive neutrinos would be to introduce the right-handed neutrino states (cid:2)having no gauge interactions, these sterile states would be essentially undetectable(cid:3) andobtainaDiracmasstermthroughaYukawacoupling. TheSMgaugeinteractionshavebeentestedwithunprecedentedaccuracy,including someobservablesbeyondevenonepartinamillion(cid:7)1(cid:8).Nevertheless,thesagaoftheSMis stillexhilaratingbecauseitleavesallquestionsofconsequenceunanswered.Themostevident of unanswered questions is why there is a huge disparity between the strength of gravity and of the SM forces. This hierarchy problem suggests that new physics could be at play at the TeV-scale and is arguably the driving force behind high energy physics for several decades.Muchofthemotivationforanticipatingtheexistenceofsuchnewphysicsisbased onconsiderationsofnaturalness.ThenonzerovacuumexpectationvalueofthescalarHiggs doubletcondensatesetsthescaleofelectroweakinteractions.However,duetothequadratic sensitivity of theHiggsmass toquantum corrections fromanarbitrarily high mass scaleΛ, withnonewphysicsbetweentheenergyscaleofelectroweakunificationandthevicinityof the Planck mass, the bare Higgs mass and quantum corrections have to cancel at a level of onepartin∼1030.Thisfine-tunedcancellationseemsunnatural,eventhoughitisinprinciple self-consistent.ThuseitherthescaleofnewphysicsΛismuchsmallerthanthePlanckscale or there exists a mechanism which ensures this cancellation, perhaps arising from a new symmetryprinciplebeyondtheSM;minimalsupersymmetry(cid:2)SUSY(cid:3)isatextbookexample (cid:7)4(cid:8).Ineithercase,anextensionoftheSMappearsnecessary. Inthispaperweexaminethephenomenologyofanewfangledextensionofthegauge sector, U(cid:2)3(cid:3) ×Sp(cid:2)1(cid:3) ×U(cid:2)1(cid:3) ×U(cid:2)1(cid:3) , which has the attractive property of elevating the C L L R two major global symmetries of the SM (cid:2)B and L(cid:3) to local gauge symmetries (cid:7)5(cid:8). (cid:2)The fundamental principles of the model are summarized in (cid:7)6–8(cid:8). Herein though we replace at full length the U(cid:2)2(cid:3) doublets by Sp(cid:2)1(cid:3) doublets. Besides the fact that this reduces the L L number of extra U(cid:2)1(cid:3)’s, one avoids the presence of a problematic Peccei-Quinn symmetry (cid:7)9–11(cid:8),associatedingeneralwiththeU(cid:2)1(cid:3)ofU(cid:2)2(cid:3) underwhichHiggsdoubletsarecharged L (cid:7)12(cid:8).Apointworthnotingatthisjuncture:thecompactsymplecticgroupSp(cid:2)1(cid:3)isequivalent toSU(cid:2)2(cid:3);ourchoiceofnotationwillbecomeclearinSection5.(cid:3)TheU(cid:2)1(cid:3) bosonY ,which Y μ gaugestheusualelectroweakhyperchargesymmetry,isalinearcombinationoftheU(cid:2)1(cid:3)of U(cid:2)3(cid:3) gauge boson C , the U(cid:2)1(cid:3) boson B , and a third additional U(cid:2)1(cid:3) field B(cid:2) . The Q , C μ R μ L μ 3 Q ,Q contentofthehyperchargeoperatorisgivenby 1L 1R Q (cid:4)c Q (cid:5)c Q (cid:5)c Q , (cid:2)1.4(cid:3) Y 1 1R 3 3 4 1L withc (cid:4) 1/2, c (cid:4) 1/6,andc (cid:4) −1/2(cid:7)13(cid:8).ThecorrespondingfermionandHiggsdoublet 1 3 4 quantumnumbersaregiveninTable1.ThecriteriaweadoptheretodefinetheHiggscharges are to make the Yukawa couplings (cid:2)HUQ, H†DQ, H†EL, HN L(cid:3) invariant under all i i i i i i i i 4 AdvancesinHighEnergyPhysics Table1:QuantumnumbersofchiralfermionsandHiggsdoublet. Name Representation Q Q Q Q 3 1L 1R Y 1 Q (cid:2)3,2(cid:3) 1 0 0 i 6 2 − Ui (cid:2)3,1(cid:3) −1 0 −1 3 1 Di (cid:2)3,1(cid:3) −1 0 1 3 1 − Li (cid:2)1,2(cid:3) 0 1 0 2 E (cid:2)1,1(cid:3) 0 −1 1 1 i N (cid:2)1,1(cid:3) 0 −1 −1 0 i 1 H (cid:2)1,2(cid:3) 0 0 1 2 three U(cid:2)1(cid:3)’s. From Table1, UQ has the charges (cid:2)0,0,−1(cid:3) and DQ has (cid:2)0,0,1(cid:3); therefore, i i i i the Higgs H has Q (cid:4) Q (cid:4) 0, Q (cid:4) 1, Q (cid:4) 1/2, whereas H† has opposite charges 3 1L 1R Y Q (cid:4)Q (cid:4)0,Q (cid:4)−1,Q (cid:4)−1/2.ThetwoextraU(cid:2)1(cid:3)’sarethebaryonandleptonnumber; 3 1L 1R Y theyaregivenbythefollowingcombinations: Q 1 1 1 B (cid:4) 3, L(cid:4)Q , Q (cid:4) Q − Q (cid:5) Q , (cid:2)1.5(cid:3) 1L Y 3 1L 1R 3 6 2 2 orequivalentlybytheinverserelations Q (cid:4)3B, Q (cid:4)L, Q (cid:4)2Q −(cid:2)B−L(cid:3). (cid:2)1.6(cid:3) 3 1L 1R Y EventhoughBisanomalous,withtheadditionofthreefermionsingletsN,thecombination i B−Lisanomalyfree.OnecanverifybyinspectionofTable1thattheseN havethequantum i numbers of right-handed neutrinos, that is, singlets under hypercharge. Therefore, this is a firstinterestingpredictionoftheU(cid:2)3(cid:3) ×Sp(cid:2)1(cid:3) ×U(cid:2)1(cid:3) ×U(cid:2)1(cid:3) gaugetheory:right-handed C L L R neutrinosmustexist. Beforediscussingthefavorablephenomenologicalimplicationsofthemodel,wedetail somedesirablepropertieswhichapplytogenericmodelswithmultipleU(cid:2)1(cid:3)symmetries. 2. Running of the Abelian Gauge Couplings We begin with the covariant derivative for the U(cid:2)1(cid:3) fields in the “flavor” 1,2,3,... basis in whichitisassumedthatthekineticenergytermscontainingXi arecanonicallynormalized: μ (cid:3) D (cid:4)∂ −i g(cid:2)QXi. (cid:2)2.1(cid:3) μ μ i i μ AdvancesinHighEnergyPhysics 5 The relations between the U(cid:2)1(cid:3) couplings g(cid:2) and any nonabelian counterparts are left open i (cid:4) fornow.WecarryoutanorthogonaltransformationofthefieldsXi (cid:4) O Yj.Thecovariant μ j ij μ derivativebecomes (cid:3)(cid:3) D (cid:4)∂ −i g(cid:2)QO Yj μ μ i i ij μ i j (cid:3) (cid:2)2.2(cid:3) (cid:4)∂ −i g Q Yj, μ j j μ j whereforeachj (cid:3) gjQj (cid:4) gi(cid:2)QiOij. (cid:2)2.3(cid:3) i Next,supposeweareprovidedwithnormalizationforthehypercharge(cid:2)takenasj (cid:4)1(cid:3) (cid:3) QY (cid:4) ciQi, (cid:2)2.4(cid:3) i hereafterweomitthebarsforsimplicity.Rewriting(cid:2)2.3(cid:3)forthehypercharge (cid:3) gYQY (cid:4) gi(cid:2)QiOi1 (cid:2)2.5(cid:3) i andsubstituting(cid:2)2.4(cid:3)into(cid:2)2.5(cid:3),weobtain (cid:3) (cid:3) gY Qici (cid:4) gi(cid:2)Oi1Qi. (cid:2)2.6(cid:3) i i One can think about the charges Qi,p as vectors with the(cid:4)components labeled by particles p. Let us fir(cid:4)st take the charges to be orthogonal, that is, pQi,pQk,p (cid:4) 0 for i/(cid:4)k. Multiplying(cid:2)2.6(cid:3)by Q , p k,p (cid:3) (cid:3) (cid:3) (cid:3) Qk,pgY Qi,pci (cid:4) Qk,p gi(cid:2)Oi1Qi,p, (cid:2)2.7(cid:3) p i p i weobtain g c (cid:4)g(cid:2)O , (cid:2)2.8(cid:3) Y i i i1 orequivalently g c Oi1 (cid:4) Y(cid:2)i. (cid:2)2.9(cid:3) g i 6 AdvancesinHighEnergyPhysics (cid:4) Orthogonalityoftherotationmatrix, O2 (cid:4)1,implies i i1 (cid:5) (cid:6) (cid:3) 2 g2 ci (cid:4)1. (cid:2)2.10(cid:3) Y g(cid:2) i i Then,thecondition (cid:5) (cid:6) (cid:3) 2 P ≡ 1 − ci (cid:4)0 (cid:2)2.11(cid:3) g2 g(cid:2) Y i i encodes the orthogonality of the mixing matrix connecting the fields coupled to the flavor charges Q ,Q ,Q ,... and the fields rotated, so that one of them, Y, couples to the 1 2 3 hypercharge Q . Therefore, for orthogonal charges, as the couplings run with energy, the Y conditionP (cid:4)0needstostayintact(cid:7)5(cid:8). A very important point is that the couplings that are running are those of the U(cid:2)1(cid:3) fields; hence the β functions receive contributions from fermions and scalars, but not from gauge bosons. As a consequence, if we start with a set of couplings at a high mass scale Λ satisfyingP (cid:4) 0,thisconditionwillbemaintainedatoneloopasthecouplingsrundownto lowerenergies(cid:2)Q(cid:3).Theone-loopcorrectiontothevariouscouplingsis (cid:7) (cid:8) 1 1 b Q (cid:4) − Y ln , (cid:2)2.12(cid:3) α (cid:2)Q(cid:3) α (cid:2)Λ(cid:3) 2π Λ Y Y (cid:7) (cid:8) 1 1 b Q (cid:4) − i ln , (cid:2)2.13(cid:3) α(cid:2)Q(cid:3) α(cid:2)Λ(cid:3) 2π Λ i i where 2 1 b (cid:4) TrQ2 (cid:5) TrQ2 , Y 3 Y,f 3 Y,s (cid:2)2.14(cid:3) 2 1 b (cid:4) TrQ2 (cid:5) TrQ2 , i 3 i,f 3 i,s withf andsindicatingcontributionfromferm(cid:4)ionandscalar(cid:4)loops,respectively. Recall that the charges are orthogonal, sQi,sQk,s (cid:4) fQi,fQk,f (cid:4) 0 for i/(cid:4)k. Then (cid:2)2.4(cid:3)implies (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) QY2,s (cid:4) ci2 Qi2,s, QY2,f (cid:4) ci2 Qi2,f, (cid:2)2.15(cid:3) s i s f i f hence, (cid:3) bY (cid:4) ci2bi. (cid:2)2.16(cid:3) i AdvancesinHighEnergyPhysics 7 Ontheother,theRG-inducedchangeofP definedin(cid:2)2.11(cid:3)reads (cid:7) (cid:8) (cid:7) (cid:8) (cid:3) 1 1 ΔP (cid:4)Δ − c2Δ α i α Y i i (cid:5) (cid:6) (cid:7) (cid:8) (cid:2)2.17(cid:3) (cid:3) 1 Q (cid:4) b − c2b ln . 2π Y i i Λ i Thus,P (cid:4)0staysvalidtooneloopifthechargesareorthogonal(cid:7)5(cid:8). Shouldthechargesnotbeorthogonal,itisinstructivetowrite(cid:2)2.6(cid:3)asV·Q(cid:4)0,where g c Vi (cid:4)Oi1− Y(cid:2)i. (cid:2)2.18(cid:3) g i CertainlyV (cid:4) 0stillholdsasapossiblesolution.Butasthechargesdonotformamutually i orthogonal basis, one can ask whether other solutions exist. This will be the case if, for nonzeroV, (cid:3) ViQiα (cid:4)0 (cid:2)2.19(cid:3) i for each α, where Qα is the U(cid:2)1(cid:3) charge of the particle α. In the U(cid:2)3(cid:3) × U(cid:2)2(cid:3) × U(cid:2)1(cid:3) i gauge group of (cid:7)12(cid:8), the right-handed electron is charged only with respect to one of the abelian groups. From (cid:2)2.19(cid:3), this sets one of the V’s (cid:2)say V (cid:3) equal to zero. For α (cid:4) Q,U, 1 i i D,L,E,N,H, there remain at least 4 additional equations satisfied by the remaining i i i i componentsV andV .TheresultingovercompletenessleadstoV (cid:4)V (cid:4)0. 2 3 2 3 Although in most models the condition P (cid:4) 0 holds in spite of the nonorthogonality oftheQ’s,theRGequationscontrollingtherunningofthecouplingslosetheirsimplicity.In i particular,since (cid:3) TrQY2 /(cid:4) ci2TrQi2, (cid:2)2.20(cid:3) i theRGequationsbecomecoupled.Inaddition,kineticmixingisgeneratedatonelooplevel evenifitisabsentinitially(cid:7)14,15(cid:8).Removalofthemixingterminordertorestorecanonical gaugekineticenergyrequiresanadditionalO(cid:2)3(cid:3)rotation,greatlycomplicatingtheanalysis. Here,weareconsideringmodelswheretheunderlyingsymmetryathighenergiesis U(cid:2)N(cid:3)ratherthanSU(cid:2)N(cid:3).Following(cid:7)12(cid:8),wenormalizeallU(cid:2)N(cid:3)generatorsaccordingto (cid:9) (cid:10) Tr TaTb (cid:4) 1δab, (cid:2)2.21(cid:3) 2 √ andmeasurethecorrespondingU(cid:2)1(cid:3) chargeswithrespecttothecouplingg / 2N,with N N g as the SU(cid:2)N(cid:3) coupling constant. Hence, the fundamental representation of SU(cid:2)N(cid:3) has N U(cid:2)1(cid:3) chargeunity.AnotherimportantelementoftheRGanalysisisthattheU(cid:2)1(cid:3)couplings N (cid:2)g(cid:2),g(cid:2),g(cid:2)(cid:3) run different from the nonabelian SU(cid:2)3(cid:3) (cid:2)g (cid:3) and SU(cid:2)2(cid:3) (cid:2)g (cid:3). This implies that 1 2 3 3 2 8 AdvancesinHighEnergyPhysics the p√revious relation for normalization of abelian and nonabelian coupling constants, g(cid:2) (cid:4) N g / 2N, holds only at the scale of U(cid:2)N(cid:3) unification (cid:7)5(cid:8). The SM chiral fermion charges N in Table1 are not orthogonal as given (cid:2)TrQ1LQ1R/(cid:4)0,(cid:3). Orthogonality can be completed by includingaright-handedneutrino. An obvious question is whether each of the fields on the rotated basis couples to a singlechargeQ.Let i L(cid:4)XTGQ (cid:2)2.22(cid:3) betheLagrangianinthe1,2,3,...basis,withXi andQ vectorsandGadiagonalmatrixin μ i N-dimensional“flavor”space.Nowrotatetoneworthogonalbasis(cid:2)Q(cid:3)forQ: Q(cid:4)RQ, (cid:2)2.23(cid:3) equation(cid:2)2.22(cid:3)becomes L(cid:4)XTGRQ. (cid:2)2.24(cid:3) Asitstands,eachXi doesnotcoupletoauniquechargeQ;hencewerotateX, μ i X(cid:4)OY, (cid:2)2.25(cid:3) toobtain L(cid:4)YTOTGRQ. (cid:2)2.26(cid:3) Wewishtoseeif,forgivenOandG,wecanfindanRsothat (cid:11) (cid:12) OTGR(cid:4)G diagonal . (cid:2)2.27(cid:3) i ThisallowseachY tocoupletoauniquechargeQ withstrengthg .Toseetheproblemwith μ i i this,werewrite(cid:2)2.27(cid:3)intermsofcomponents (cid:9) (cid:10) OT gjRjk (cid:4)giδik, (cid:2)2.28(cid:3) ij fori/(cid:4)k,(cid:2)2.28(cid:3)leadsto (cid:9) (cid:10) OT gjRjk (cid:4)0. (cid:2)2.29(cid:3) ij AdvancesinHighEnergyPhysics 9 In general, in (cid:2)2.29(cid:3) there are N(cid:2)N −1(cid:3) equations, but only N(cid:2)N −1(cid:3)/2 independent O ij generatorsinSO(cid:2)N(cid:3);thereforethesystemisoverdetermined(cid:7)16(cid:8).Ofcourse,ifG (cid:4) gI,the equationbecomes OTR(cid:4)I, (cid:2)2.30(cid:3) andsoO(cid:4)R. WeillustratewiththecaseN (cid:4)2;let (cid:5) (cid:6) C S R(cid:4) ϕ ϕ , −S C ϕ ϕ (cid:5) (cid:6) (cid:2) g 0 G(cid:4) 1 , (cid:2)2.31(cid:3) (cid:2) 0 g 3 (cid:5) (cid:6) C S O(cid:4) ϑ ϑ , −S C ϑ ϑ then, (cid:5) (cid:6) (cid:5) (cid:6) g(cid:2)C C (cid:5)g(cid:2)S S g(cid:2)C S −g(cid:2)S C g(cid:2) 0 OGR(cid:4) 1 ϑ ϕ 3 ϑ ϕ 1 ϑ ϕ 3 ϑ ϕ (cid:4) 1 . (cid:2)2.32(cid:3) g(cid:2)S C (cid:5)g(cid:2)C S g(cid:2)S S −g(cid:2)C C 0 g(cid:2) 1 ϑ ϕ 3 ϑ ϕ 1 ϑ ϕ 3 ϑ ϕ 3 Fromtheoff-diagonalterms,weobtain (cid:2) g g(cid:2)C S −g(cid:2)S C (cid:4)0(cid:4)⇒tanϑ(cid:4) 1 tanϕ, 1 ϑ ϕ 2 ϑ ϕ g(cid:2) 2 (cid:2)2.33(cid:3) (cid:2) g g(cid:2)S C −g(cid:2)C S (cid:4)0(cid:4)⇒tanϑ(cid:4) 2 tanϕ 1 ϑ ϕ 2 ϑ ϕ g(cid:2) 1 whichimpliesthatg(cid:2) (cid:4) g(cid:2) (cid:4) g orequivalentlythatGisamultipleoftheunitmatrix.Next, 1 2 weconsiderthediagonalelementsusingg(cid:2) (cid:4)g(cid:2) toobtain 1 2 (cid:11) (cid:12) cos ϑ−ϕ (cid:4)0(cid:4)⇒ϑ(cid:4)ϕ. (cid:2)2.34(cid:3) NotethatthematrixRhasoneindependentvariable,andtherearetwoindependenthomo- geneousequations. (cid:2) (cid:2) Any vector boson Y , orthogonal to the hypercharge, must grow a mass M in μ order to avoid long range forces between baryons other than gravity and Coulomb forces. The anomalous mass growth allows the survival of global baryon number conservation, preventingfastprotondecay(cid:7)17(cid:8).Itisthisthatwenowturntostudy. 10 AdvancesinHighEnergyPhysics 3. Premises of the Anomalous Sector OutsideoftheHiggscouplings,therelevantpartsoftheLagrangianarethegaugecouplings generatedbytheU(cid:2)1(cid:3)covariantderivativesactingonthematterfieldsandthe(cid:2)mass(cid:3)2matrix oftheanomaloussector L(cid:4)QTGX(cid:5) 1XTM2X, (cid:2)3.1(cid:3) 2 where Xi are the three U(cid:2)1(cid:3) gauge fields in the D-brane basis (cid:2)B ,C ,B(cid:2) (cid:3), G is a diagonal μ μ μ μ couplingmatrix(cid:2)g(cid:2),g(cid:2),g(cid:2)(cid:3),andQarethe3chargematrices. 1 3 4 Again,performarotationX (cid:4) OYandrequirethatoneoftheY’s(cid:2)sayY (cid:3)couplesto μ hypercharge.WethenobtaintheconstraintonthefirstcolumnofOgivenin(cid:2)2.9(cid:3).However, there is now an additional constraint: the field Y is an eigenstate of M2 with zero eigenvalue. μ UndertheOrotation,themasstermbecomes 1XTM2X(cid:4) 1YTM2Y, (cid:2)3.2(cid:3) 2 2 withM2 (cid:4) OTM2O.WeknowthatatleastY isaneigenstatewitheigenvaluezero.Wealso μ know that Poincare invariance requires the complete diagonalization of the mass matrix in order to deal with observables. However, further similarity transformations will undo the couplingofthezeroeigenstatetohypercharge.Thereseemsnowayofeventuallyfulfillingall theseconditionsexcepttorequirethatthesameOwhichrotatestocoupleY tohypercharge μ simultaneouslydiagonalizesM2sothat (cid:9) (cid:10) M2 (cid:4)diag 0,M(cid:2)2,M(cid:2)(cid:2)2 . (cid:2)3.3(cid:3) ThisimpliesthattheoriginalM2intheflavorbasisisgivenby (cid:9) (cid:10) M2 (cid:4)Odiag 0,M(cid:2)2,M(cid:2)(cid:2)2 OT, (cid:2)3.4(cid:3) whichresultsinthefollowingbaroquematrix: ⎛ ⎞ a b c ⎜ ⎟ ⎜ ⎟ M2 (cid:4)⎜b d e⎟, (cid:2)3.5(cid:3) ⎝ ⎠ c e f

Description:
The nonzero vacuum expectation value of the scalar Higgs In this paper we examine the phenomenology of a newfangled extension of the gauge sector, U 3C .. and wave functions to first order of the mass-diagonal eigenfields.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.