ebook img

Local-Duality QCD Sum Rules for Pion Elastic and (pi^0, eta, eta') to gamma gamma* Transition Form Factors Revisited PDF

0.14 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Local-Duality QCD Sum Rules for Pion Elastic and (pi^0, eta, eta') to gamma gamma* Transition Form Factors Revisited

Local-Duality QCD Sum Rules for Pion Elastic and (p 0,h ,h ) gg Transition Form Factors Revisited ′ ∗ → 2 1 0 Irina Balakireva 2 ∗ D.V.SkobeltsynInstituteofNuclearPhysics,MoscowStateUniversity,119991,Moscow,Russia n E-mail: [email protected] a J WolfgangLucha 0 1 InstituteforHighEnergyPhysics,AustrianAcademyofSciences,Nikolsdorfergasse18,A-1050 Vienna,Austria ] h E-mail: [email protected] p - Dmitri Melikhov p InstituteforHighEnergyPhysics,AustrianAcademyofSciences,Nikolsdorfergasse18,A-1050 e h Vienna,Austria, [ FacultyofPhysics,UniversityofVienna,Boltzmanngasse5,A-1090Vienna,Austria,and 1 D.V.SkobeltsynInstituteofNuclearPhysics,MoscowStateUniversity,119991,Moscow,Russia v E-mail: [email protected] 9 4 0 Thelocal-dualityformulationofQCDsumrulesallowsforthepredictionofhadronicformfactors 2 withoutknowledgeofthesubtledetailsoftheirstructure.Withtheaidofthisformalism,wetakea . 1 freshlookatthebehavioursofthecharged-pionelasticformfactorandoftheformfactorsentering 0 2 inthetransitionsoftheground-stateneutralunflavouredpseudoscalarmesonsp 0,h ,h ′toonereal 1 andonevirtualphotonwithinabroadrangeofmomentumtransfersQ2.Theuncertaintiesinduced : v bytheapproximationsinherenttothislocal-dualityapproachareestimatedbystudying,inparallel i X toQCD,quantum-mechanicalpotentialmodels,wheretheexactformfactors,obtainedbysolving r theSchrödingerequation,maybecomparedwiththecorrespondinglocal-dualitysum-ruleresults. a ForQ2 5–6GeV2,wejudgethepredictionsofthesimplestlocal-dualitymodeltobereliableand ≥ expecttheiraccuracytoimproveveryfastwithincreasingQ2.Thelarge-Q2predictionforthepion elasticformfactorshouldbeapproachedalreadyatmoderatemomentumtransferQ2 4–8GeV2; ≈ largedeviationsfromitslocal-dualitybehaviourforQ2=20–50GeV2,predictedbysomehadron- structuremodels,seemratherunlikely.The(h ,h ) gg formfactorsdeducedfromthesimplest ′ ∗ → local-dualityapproachexhibitexcellentagreementwithexperiment.Instartlingcontrast,BABAR measurementsofthep 0 gg formfactorimplylocal-dualityviolationswhichevenrisewithQ2. ∗ → TheXXthInternationalWorkshopHighEnergyPhysicsandQuantumFieldTheory September24–October1,2011 Sochi,Russia Speaker. ∗ (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ PionElasticand(p 0,h ,h ) gg TransitionFormFactors IrinaBalakireva ′ ∗ → 1. Introduction: Motivationand Incentive forReconsidering a Long-Standing Issue QCDsumrulesaimtopredictthecharacteristicfeaturesofground-statehadrons(theirmasses, decayconstants,formfactors,etc.) fromtheunderlyingquantumfieldtheoryofstronginteractions, quantumchromodynamics(QCD),byevaluatingmatrixelementsofsuitablychosenoperatorsboth onthelevelofhadronsandontheleveloftheQCDdegreesoffreedomquarksandgluons. Wilson’s operatorproductexpansionallowsfortheconversionofthesenonlocaloperatorsintoseriesoflocal operators. BythisprocesstheQCD-levelmatrixelementsreceivebothperturbativecontributionsas wellasnon-perturbativecontributionsinvolvinguniversalquantitiescalledvacuumcondensates. In ordertosuppressthecontributionsofhadronicexcitationsandcontinuumandtoremovesubtraction terms,Boreltransformationstonewvariables,dubbedastheBorelmassparameters,areperformed. RepresentingtheperturbativecontributionstoourQCD-levelmatrixelementsinformofdispersion integralsovercorrespondingspectraldensitiesallowsustobypassourignoranceabouthigherstates byinvokingtheconceptofquark–hadronduality: beyondsomeeffectivethresholdstheperturbative QCDcontributionsandtheexpressionsofhadronexcitationsandcontinuumareassumedtocancel. TheoutcomeofthesestepsaresumrulesrelatingQCDparameterstoobservablehadronproperties. InthelimitofinfinitelylargeBorelmassparameters,allnon-perturbativeQCDcontributionsvanish andweareleftwithwhatisknownaslocal-duality(LD)formofQCDsumrules,renderingpossible toderivefeaturesofground-statehadronsfromperturbativeQCDandoureffective-thresholdideas. Recently,weappliedtheLDsum-ruleformalismtoreanalyzeboththeelasticformfactorofthe pion[1]andtheformfactorthatdescribesthetransitionP gg ofsomelightneutralpseudoscalar ∗ → mesonP=p 0,h ,h toarealphotong andavirtualphotong [2]. Oneparticularlyattractivefeature ′ ∗ oftheLDsum-ruleapproachisthepossibilitytoextractpredictionsforhadronformfactorswithout knowledgeofallsubtledetailsofthestructureofthehadronicboundstatesandtoconsiderdifferent hadronsonanequalfooting. Here,wetakearetrospectivelookfrombird’seyeviewatourfindings: Afterrecalling,fortheexampleofthepion,theratherwell-knownbasicfeaturesoftheLDsum-rule approachtopseudoscalar-mesonformfactors,inordertogetanidea(orevenroughestimate)ofthe accuracytobeexpectedforreal-lifemesonsdescribedbyQCDsumruleswemakeabriefandinthe meanwhilewell-establishedsidesteptotheirquantum-mechanicalanaloguesasameanstoexamine theuncertaintiesinducedbymodelingtheimpactofhigherhadronicstatesinarathernaïvefashion. Then,equippedwithsufficientconfidenceinthereliabilityoftheadoptedLDapproximationforthe effectivethresholds,wediscuss,inturn,thep elasticand p 0,h ,h gg transitionformfactors. ′ ∗ → (cid:0) (cid:1) 2. DispersiveThree-Point QCDSum Rulesinthe LimitofLocal Duality[3] ThebasicobjectsexploitedherefortheinvestigationofthebehaviourofformfactorsF(Q2)as functionsoftheinvolvedmomentumtransferssquared,Q2= q2 0,arethree-pointfunctions,the − ≥ vacuumcorrelatorofonevectorandtwoaxialvectorcurrents,withdoublespectraldensityD ,for pert theelasticformfactorFp (Q2)andthevacuumcorrelatorofoneaxialvectorandtwovectorcurrents, withsinglespectraldensitys pert,forthetransitionformfactorFpg (Q2),satisfyingtheLDsumrules seff(Q2) seff(Q2) s¯eff(Q2) 1 1 Fp (Q2)= fp2 Z ds1 Z ds2D pert(s1,s2,Q2), Fpg (Q2)= fp Z dss pert(s,Q2). (2.1) 0 0 0 2 PionElasticand(p 0,h ,h ) gg TransitionFormFactors IrinaBalakireva ′ ∗ → Here, fp isthecharged-piondecayconstant: fp =130MeV.Nowalldetailsofthenon-perturbative dynamicsareencodedintheeffectivethresholdss (Q2)ands¯ (Q2)thatenterasupperendpoints. eff eff Wetakethelibertyofintroducingthenotionofanequivalenteffectivethreshold,definedbythe requirementthattheuseofthisquantityaseffectivethresholdintheappropriatedispersivesumrule —suchastheLDrepresentativesofEq.(2.1)—reproducesfortheformfactorunderconsideration eithergivenexperimentaldataoraparticulartheoreticalpredictionexactly. Withsuchpowerfultool atourdisposal,weareabletoquantifyourobservationsandmakeourconclusionsmuchmoreclear. Withinperturbationtheory,thespectraldensitiesD (s ,s ,Q2)ands (s,Q2)arederivedas pert 1 2 pert seriesexpansionsinpowersofthestrongcouplinga byevaluatingtherelevantFeynmandiagrams: s D (s ,s ,Q2) = D (0)(s ,s ,Q2)+a (Q2)D (1)(s ,s ,Q2)+O(a 2), pert 1 2 pert 1 2 s pert 1 2 s s (s,Q2) = s (0)(s,Q2)+a (Q2)s (1)(s,Q2)+O(a 2). (2.2) pert pert s pert s Asfarastheiraspectsrelevantforourpresentpurposesareconcerned,thetheoreticalstatusofthese spectraldensitiesmaybesummarizedasfollows. InthedoublespectraldensityD (s ,s ,Q2),for pert 1 2 fixeds andlargemomentumtransfersQ2,theone-loopcontributionD (0)(s ,s ,Q2)vanisheslike 1,2 pert 1 2 D (0)(s ,s ,Q2)(cid:181) 1/Q4andthetwo-loopcontributionD (1)(s ,s ,Q2)approachesthebehaviour[4] pert 1 2 pert 1 2 1 D (1)(s ,s ,Q2) ; pert 1 2 −Q−2−−→¥ 2p 3Q2 → inotherwords,inthelimitQ2 ¥ thelowest-ordertermdecaysfasterthanthenext-to-lowestterm. → Inthesinglespectraldensitys (s,Q2),thetwo-loopcorrections (1)(s,Q2)hasbeenproven[5]to pert pert vanishidentically: s (1)(s,Q2) 0.Higher-orderradiativecorrectionshavenotyetbeencalculated. pert ≡ Withtherequiredspectraldensitiesavailableatleastuptosomeorderofperturbationtheory,as soonasthedependenciesoftheeffectivethresholdss (Q2)ands¯ (Q2)onthemomentumtransfer eff eff Q2havebeenfound,theformfactorsofinterestcanbeeasilyextractedfromtheLDsumrules(2.1). Factorizationtheoremsforhardformfactors[6],allowingforseparationofthedynamicsintoshort- andlong-distancecontributions,establishtheasymptoticbehaviouroftheformfactorsforlargeQ2: Q2Fp (Q2) 8pa s(Q2)fp2 , Q2Fpg (Q2) √2fp . −Q−2−−→¥ −Q−2−−→¥ → → Thesumrules(2.1)withthespectralfunctions(2.2)reproduce,atO(a 2)accuracy,thisbehaviourif s limseff(Q2)= lims¯eff(Q2)=4p 2 fp2 0.671GeV2 (2.3) Q2 ¥ Q2 ¥ ≈ → → holds. Theremainingtaskistodeterminethebehaviouroftheeffectivethresholdsatfinitevaluesof Q2.Unfortunately,asanalyzedindetailinRefs.[7],theformulationofareliablecriterionforfixing athresholdposesasomewhatdelicateproblemas,forfiniteQ2,theeffectivethresholdss (Q2)and eff s¯ (Q2)cannotbeassumedtobeequaltotheirasymptotes(2.3);rather,theywilldependonQ2and, eff generally,differfromeachother[8]. Averysimpleideaistoassumethattheuseoftheirasymptotic valuesprovidesameaningfulapproximationalsoatmoderatebutnottoosmallmomentumtransfer: seff(Q2)=s¯eff(Q2)=4p 2 fp2.ThischoicedefinesastraightforwardalbeitrathernaïveLDmodel[3]. Itgoeswithoutsayingthatsuchcrudeapproximationstotheeffectivethresholdsmaybewellsuited toreproducetheoveralltrendbutcanhardlyaccountforanysubtledetailofconfinementdynamics. 3 PionElasticand(p 0,h ,h ) gg TransitionFormFactors IrinaBalakireva ′ ∗ → 3. Exactand Local-DualityFormFactors inQuantum-Mechanical PotentialModels The(quantum-field-theoretic)LDsum-ruleapproachtobound-stateformfactorsmaybeeasily carriedovertoquantummechanics. Withinthelatterframework,thefeaturesofanyboundstatecan beobtainedwith,inprinciple,arbitrarilyhighprecisionfromtherelatedsolutionoftheSchrödinger equationfortheHamiltoniangoverningthedynamicsofthesystemunderconsideration. Therefore, quantum-mechanicalpotentialmodelsconstituteanidealtestgroundforestimatingthesignificance ofLDmodelsthatemployfortheeffectivethresholdsenteringintheadoptedsumrulestheconstant limitsfixedbysomeasymptoticbehaviouratexperimentallyaccessiblelowermomentumtransfers. Forthisveryreason,weexaminequantum-mechanicalpotentialmodelsdefinedbyHamiltoniansH whichmustincorporate,forthestudyoftheelasticformfactor,confiningandCoulombinteractions (h =1)but,fortheinvestigationofthetransitionformfactor,merelyconfininginteractions(h =0): k2 a H = +V (r) h , V (r)=s (mr)n , r x , n=2,1,1/2 . conf conf n 2m − r ≡| | Weensurearealisticdescriptionofmesonsbyadoptingforournumericalanalysisparametervalues appropriateforhadronphysics: m=0.175GeVforthereducedmassoflightconstituentquarksand a =0.3forthecouplingstrengtha oftheCoulombinteractionterm. Fortheconfininginteractions, weconsiderseveralpower-lawpotentialshapesV (r),adjustingtheassociatedcouplingstrengths conf s suchthatineachcasetheSchrödingerequationpredictsthesamevaluey (0)=0.078GeV3/2for n theground-statewavefunctiony attheorigin: s =0.71GeV,s =0.96GeVands =1.4GeV. 2 1 1/2 Then,thesizeofthelowest-lyingboundstateisabout1 fmandthusoftypicalhadronicdimensions. (cid:143)(cid:143) keffHQL@GeVD keffHQL@GeVD 0.9 0.9 Vconf~r2 Vconf~r Vconf~r1(cid:144)2 0.8 kLD=H6Π2RgL1(cid:144)3 0.8 0.7 0.7 kLD=H6Π2RgL1(cid:144)3 0.6 V ~r2 0.5 conf 0.6 0.4 k Q@GeVD 0.3 Q@GeVD 2 4 6 8 10 0.5 1 1.5 2 2.5 3 Figure1:Exactquantum-mechanicaleffectivethresholdsforelastic(left)andtransition(right)formfactors. WiththenumericallyexactsolutionoftheSchrödingerequationathand,weareinapositionto confronttheformfactorsarisingthereofwithcorrespondingpredictionsofthequantum-mechanical counterpartsoftheLDQCDsumrules(2.1),whichinvolveeffectivethresholdsk (Q)andk¯ (Q), eff eff respectively. AsintheQCDcase,theasymptoticbehaviouroftheelasticandtransitionformfactors inthelimitofinfinitelylargemomentumtransferQmaybederivedfromfactorizationtheorems[6]. Intermsoftheground-statedecayconstantR y (0)2,thisasymptoticbehaviourisguaranteedif g ≡| | theeffectivethresholdsfulfillk (Q ¥ )=k¯ (Q ¥ )=(6p 2R )1/3.Figure1showsthattheLD eff eff g → → modelk (Q)=k¯ (Q)=(6p 2R )1/3approximatesindependentlyoftheconfiningpotentialinuse eff eff g theexacteffectivethresholdsyieldingthetrueformfactorswithimprovingaccuracy,startingforthe elasticformfactoratQ2 5–8GeV2andforthetransitionformfactoratsomeevenlowerQ2value. ≈ 4 PionElasticand(p 0,h ,h ) gg TransitionFormFactors IrinaBalakireva ′ ∗ → 4. The PionElasticFormFactor[1] Thepionbelongs,beyonddoubt,tothebest-studiedmesons. Nevertheless,theoneortheother ofitsmostimportantpropertiesstillcannotseriouslybeclaimedtobesufficientlywellunderstood.1 Figure2displaysasnapshotofthepresentstatusofthepion’selectromagneticorelasticformfactor Fp (Q2)fromboththeexperimental[9]andthetheoretical[1,10]pointsofview. Obviously,thereis ampleroomforcontroversy,butnoconsensusonFp (Q2)formomentumtransfersQ2 5–50GeV2. ≈ Q2F HQ2L@GeV2D Π 0.6 BPS’2009 BT’2008 0.5 0.4 GR’2008 0.3 BLM’2008 0.2 pQCDasymptotics 0.1 Q2@GeV2D 2.5 5 7.5 10 12.5 15 17.5 20 Figure2:PionelasticformfactorFp (Q2):experimentaldata[9]andsomerecenttheoreticalfindings[1,10]. Inordertocastsomelightontothesedisquietingpuzzles,Figure3depictsourtranslationofthe findingssummarizedinFig.2toequivalenteffectivethresholdss (Q2)calculatedbackfromeither eff experimentaldataortheoreticalpredictionsforFp (Q2): theexacteffectivethresholdextractedfrom thedataiscompatiblewiththeassumptionthattheLDlimitisapproachedatratherlowQ2whereas, contrarytoquantumphysics,theoryseemsnottocareaboutlocalduality,atleastforQ2 20GeV2. ≤ seffHQ2L@GeV2D seffHQ2L@GeV2D 0.9 1 BT’2008 0.8 0.9 BPS’2009 0.7 seffH¥L=4Π2fΠ2 0.8 0.6 BLM 0.7 seffH¥L=4Π2fΠ2 Exact s HQL eff GR’2008 0.5 0.6 Exact Q2@GeV2D Q2@GeV2D 0 2 4 6 8 0 5 10 15 20 Figure3: Parametrizationoftheeffectivethresholds (Q2)byanimprovedLDmodel[1](labelledBLM) eff vs.exactbehaviour(red)oftheequivalenteffectivethresholdextractedfromexperimentaldata[9](left),and equivalenteffectivethresholdscorrespondingtothetheoreticalresultsforFp [1,10]depictedinFig.2(right). RatherprecisemeasurementsmaybeexpectedfromJLabafterthe12 GeVupgradeofCEBAF. 1Ofcourse,wheneversomeprobleminthetreatmentofanyoftheground-statepseudoscalarmesonsisencountered, asakindofautomaticreflex-likeresponseonemaybetemptedtoblamewithinQCDthepseudo-Goldstone-bosonnature oftheparticleforpreventingusfromacquiringasatisfactoryunderstanding.Nevertheless,allcomprehensiveapproaches shouldbeexpectedtobeabletodealwiththissortof“inconvenience”andtoultimatelyincorporatesuchcrucialfeatures. 5 PionElasticand(p 0,h ,h ) gg TransitionFormFactors IrinaBalakireva ′ ∗ → 5. The (p 0,h ,h ) gg TransitionFormFactors[2] ′ ∗ → Inordertoconsolidateourconcernsandtosubstantiateourconfusions,wediscusstheh andh ′ transitions(h ,h ) gg beforeturningtothecontroversialissueofthepion’stransitionp 0 gg . ′ ∗ ∗ → → 5.1 FormFactorsfortheTransitions(h ,h ) gg ′ ∗ → Thetwoisoscalarmesonsh andh ,havingthesameJPCquantumnumbers,aremixturesofall ′ lightquarks. Intheflavourbasis,themixingofthenon-strangeandstrangecontributionsisgivenby u¯u+d¯d u¯u+d¯d h = cosf s¯s sinf , h = sinf + s¯s cosf , ′ | i (cid:12) √2 (cid:29) −| i | i (cid:12) √2 (cid:29) | i (cid:12) (cid:12) withmixingangle(cid:12)(cid:12)f 39.3◦;see,e.g.,Refs.[11,12]. Thef(cid:12)(cid:12)ormfactorsreflectthisflavourstructure: ≈ Fhg (Q2)= 5Fng (Q2)cosf Fsg(Q2)sinf , Fh g (Q2)= 5Fng (Q2)sinf +Fsg(Q2)cosf . 3√2 − 3 ′ 3√2 3 Here,thenon-strangeand(s¯s)componentsFng (Q2)andFsg(Q2)oftheLDformfactorsaregivenby s¯(n)(Q2) s¯(s)(Q2) eff eff 1 1 Fng(Q2)= f Z dss p(enr)t(s,Q2), Fsg (Q2)= f Z dss p(es)rt(s,Q2), n s 0 4m2 s wheres (n) ands (s) labelthesinglespectraldensitys ofEq.(2.1)withthecorrespondingquark, pert pert pert n=u,dors,propagatingintheloop;eachcomponentutilizesaneffectivethresholdofitsown[12]: s¯(enff)=4p 2 fn2 , fn≈1.07fp , s¯e(sff)=4p 2 fs2, fs≈1.36fp . Inournumericalcalculations,weadoptm =m =0andm =100MeVforthelight-quarkmasses. u d s Q2F HQ2L@GeVD Q2F HQ2L@GeVD ΗΓ Η' Γ 0.25 0.3 LD 0.25 0.2 LD 0.2 0.15 0.15 0.1 Η®ΓΓ* 0.1 Η'®ΓΓ* 0.05 0.05 Q2 @GeV2D Q2 @GeV2D 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 Figure4:TransitionformfactorsF(h ,h )g(Q2):forh andh ′theLDmodelfitstheexperimentaldata[13,14]. ′ Accordingtoallourexperiencegainedbyin-depthinvestigationsoftheLDsum-ruleapproach withinquantummechanics,thisstraightforwardbutadmittedlynottoosophisticatedLDframework maynotperformreallywellforlowmomentumtransfersQ2,where,asabrieflookatFig.3reveals, theexacteffectivethresholdisbelowtheconstantLDeffectivethresholdinferredfromthelarge-Q2 form-factorbehaviour. However,forlargermomentumtransferthesimplequantum-mechanicalLD modelentailsaccuratepredictionsforformfactors. Figure4showsthat,forbothh andh transition ′ formfactors,wefindtheanticipatedoverallagreementbetweentheLDpredictionsandexperiment. 6 PionElasticand(p 0,h ,h ) gg TransitionFormFactors IrinaBalakireva ′ ∗ → 5.2 FormFactorfortheTransitionp 0 gg ∗ → InviewoftheundeniablesuccessesoftheLDmodelinthecaseofthep elasticformfactorand oftheh andh ′transitionformfactors,itsfailureinthecaseofthep 0transitionformfactorFpg (Q2) isallthemoresurprising. Figure5displayshowmarkedlytheLDpredictionforFpg (Q2)missesthe BABARdata[15]. ThisbecomesevenmoremanifestbythelinearrisewithQ2ofthecorresponding equivalenteffectivethresholds¯ (Q2),which,atleastintheregionuptoQ2 40GeV2,exhibitsno eff ≈ tendencyofapproachingitsLDlimit(2.3). Thisintriguingpuzzlestillawaitsacompellingsolution. Q2FΠΓHQ2L@GeVD seffHQ2L@GeV2D 1.1 0.3 Linear 1 0.25 0.9 0.2 0.8 0.15 LD 0.7 4Π2fΠ2 0.1 0.6 0.05 0.5 Q2@GeV2D Q2@GeV2D 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 Figure5:FormfactorFpg (Q2)forthepiontransitionp 0 gg ∗:someexperimentaldata[13,15],atleastthe → BABARdata(reddots),apparentlydivergefromourLDprediction;thisunexpectedbehaviourisreflectedby theequivalenteffectivethresholds¯ (Q2)exhibitingalinearrisewithQ2insteadofapproachingitsLDlimit. eff 6. Summary: Findings andConclusions Byreconsideringthedependenceofthepionelastic[1]andp 0,h ,h transition[2]formfactors ′ onthemomentumtransferQ2usingQCDsumrulesinLDlimit,wegainhighlyinterestinginsights: Pionelasticformfactor: Transferringtheoutcomesofourquantum-mechanicalanalysistoQCD, weexpectthesimpleLDmodeltobeapplicablewithincreasingaccuracyforQ2 4–8GeV2 ≥ irrespectiveoftheadoptedconfininginteractions. Forrealisticconfininginteractions,thisLD modelreproducestheelasticformfactorforQ2 20–30GeV2withhighprecision. Accurate ≥ measurementsofthisformfactoratsmallQ2suggestthatassumingfortheeffectivethreshold itsLDlimitalreadyatratherlowQ2=5–6GeV2mayconstituteareasonableapproximation. Hence,largedeviationsfromthisLDlimitatQ2=20–50GeV2mustberegardedasunlikely. Transition formfactorsforp 0,h ,h : Ourobservationsinquantummechanicscanbeunderstood ′ ashintsthat,forboundstatesoftypicalhadronextensions,theLDapproachshouldworkwell forQ2largerthanafewGeV2,anditindeeddoesfortheh gg andh gg formfactors. ∗ ′ ∗ → → However,arecentmeasurementoftheformfactorfortheneutral-piontransitionp 0 gg by ∗ → theBABARexperiment[15]impliesaviolationoflocaldualitywhichevengrowswithQ2,at leastuptoQ2ashighas40GeV2.WithintheLDsum-ruleformalism(2.1),suchbehaviourof atransitionformfactorcannotbeaccommodatedbyaconstantequivalenteffectivethreshold butmustbedescribedbyalinearQ2-dependenceofs¯ (Q2);aconvincingexplanationofthis eff hasyettobefound. ThisconclusionenjoysfullagreementwiththefindingsofRefs.[16,17]. 7 PionElasticand(p 0,h ,h ) gg TransitionFormFactors IrinaBalakireva ′ ∗ → Acknowledgments D.M.isgratefulforfinancialsupportbytheAustrianScienceFund(FWF),projectno.P22843. References [1] I.Balakireva,W.Lucha,andD.Melikhov,arXiv:1103.3781[hep-ph];arXiv:1110.6904[hep-ph], Phys.Rev.D(inpress); I.Balakireva,PoS(QFTHEP2010)059(2010)[arXiv:1009.4140[hep-ph]]; V.Braguta,W.Lucha,andD.Melikhov,Phys.Lett.B661(2008)354. [2] W.LuchaandD.Melikhov,arXiv:1110.2080[hep-ph]. [3] V.A.NesterenkoandA.V.Radyushkin,Phys.Lett.B115(1982)410; A.V.Radyushkin,ActaPhys.Polon.B26(1995)2067. [4] V.V.BragutaandA.I.Onishchenko,Phys.Lett.B591(2004)267. [5] F.JegerlehnerandO.V.Tarasov,Phys.Lett.B639(2006)299; R.S.PasechnikandO.V.Teryaev,Phys.Rev.D73(2006)034017. [6] S.J.BrodskyandG.P.Lepage,Adv.Ser.Direct.HighEnergyPhys.5(1989)93. [7] W.Lucha,D.Melikhov,andS.Simula,Phys.Rev.D76(2007)036002;Phys.Lett.B657(2007) 148;Phys.Atom.Nucl.71(2008)1461;Phys.Lett.B671(2009)445; D.Melikhov,Phys.Lett.B671(2009)450. [8] W.Lucha,D.Melikhov,andS.Simula,Phys.Rev.D79(2009)096011;J.Phys.G:Nucl.Part.Phys. 37(2010)035003;Phys.Lett.B687(2010)48;Phys.Atom.Nucl.73(2010)1770;J.Phys.G:Nucl. Part.Phys.38(2011)105002;Phys.Lett.B701(2011)82; W.Lucha,D.Melikhov,H.Sazdjian,andS.Simula,Phys.Rev.D80(2009)114028. [9] C.J.Bebeketal.,Phys.Rev.D17(1978)1693; JeffersonLabFp Collaboration,T.Hornetal.,Phys.Rev.Lett.97(2006)192001; JeffersonLabFp Collaboration,V.Tadevosyanetal.,Phys.Rev.C75(2007)055205; JeffersonLabFp Collaboration,G.M.Huberetal.,Phys.Rev.C78(2008)045203. [10] S.J.BrodskyandG.F.deTéramond,Phys.Rev.D77(2008)056007; H.R.GrigoryanandA.V.Radyushkin,Phys.Rev.D78(2008)115008; A.P.Bakulev,A.V.Pimikov,andN.G.Stefanis,Phys.Rev.D79(2009)093010. [11] V.V.Anisovich,D.I.Melikhov,andV.A.Nikonov,Phys.Rev.D52(1995)5295;55(1997)2918. [12] T.Feldmann,P.Kroll,andB.Stech,Phys.Rev.D58(1998)114006;Phys.Lett.B449(1999)339. [13] CELLOCollaboration,H.J.Behrendetal.,Z.Phys.C49(1991)401; CLEOCollaboration,J.Gronbergetal.,Phys.Rev.D57(1998)33. [14] BABARCollaboration,P.delAmoSanchezetal.,Phys.Rev.D84(2011)052001. [15] BABARCollaboration,B.Aubertetal.,Phys.Rev.D80(2009)052002. [16] H.L.L.Robertsetal.,Phys.Rev.C82(2010)065202. [17] A.P.Bakulev,S.V.Mikhailov,A.V.Pimikov,andN.G.Stefanis,Phys.Rev.D84(2011)034014. 8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.