ebook img

Local and Piecewise Affine Approaches to System Identification PDF

274 Pages·2003·1.62 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Local and Piecewise Affine Approaches to System Identification

Linko(cid:127)ping Studies in Science and Technology. Dissertations No. 802 Local and Piecewise A(cid:14)ne Approaches to System Identi(cid:12)cation Jacob Roll Department of Electrical Engineering Linko(cid:127)ping University, SE{581 83 Linko(cid:127)ping, Sweden Linko(cid:127)ping 2003 Local and Piecewise A(cid:14)ne Approaches to System Identi(cid:12)cation (cid:13)c 2003 Jacob Roll [email protected] http://www.control.isy.liu.se Division of Automatic Control Department of Electrical Engineering Linko(cid:127)ping University SE{581 83 Linko(cid:127)ping Sweden ISBN 91-7373-608-2 ISSN 0345-7524 Printed by Bokakademin, Linko(cid:127)ping, Sweden 2003 Abstract Identi(cid:12)cation of nonlinear systems is a multifaceted research area, with many di- verse approaches and methods. This thesis considers two di(cid:11)erent approaches: (nonparametric) local modelling, and identi(cid:12)cation of piecewise a(cid:14)ne systems. Local models and methods predict the system behavior by constructing func- tion estimates from observations in a local neighborhood of the point of interest. For many local methods, it turns out that the function estimates are in practice weighted sums of the observations, so a central question is how to choose the weights. Manyoftheexistingmethodsaredesignedusingasymptotic(inthenum- ber of observations) arguments, which may lead to problems when only few data are available. To avoid this, an approach named direct weight optimization is pro- posed, where an upper bound on the worst-case mean squared error is minimized directly with respect to the weights of a linear or a(cid:14)ne estimator. It is shown that the estimator will have a (cid:12)nite bandwidth, and that it keeps several of the properties of an asymptotically optimal estimator. The case when bounds on the estimated function and its derivatives are known a priori is also studied, and it is shown that one can sometimes, but not always, bene(cid:12)tfromthisextrainformation. Theproblemofestimatingthefunctionderiva- tives is also considered. Another way of approaching the nonlinear system identi(cid:12)cation problem is to use a parameterized model class. Piecewise a(cid:14)ne systems are an interesting class forthispurpose. Theyhaveuniversalapproximationproperties,andarealsoclosely related to hybrid systems. Here, an overview of di(cid:11)erent approaches appearing in the literature is presented, and a new identi(cid:12)cation method based on mixed- integer programming is proposed. One notable property of the latter method is thattheglobaloptimumisguaranteedtobefoundwithina(cid:12)nitenumberofsteps. The complexity of the mixed-integer programming approach is discussed, and its relationstoexistingapproachesarepointedout. Thespecialcaseofidenti(cid:12)cationof Wiener models is considered in detail, since this model structure makes it possible to reduce the computational complexity. Some suboptimal modi(cid:12)cations of the mixed-integer programming approach are also investigated. Asforhybridsystemsingeneral,therehasbeenagrowinginterestforpiecewise a(cid:14)ne systems in recent years, and they occur in many application areas. In many cases, safety is an important issue, and there is a need for tools that prove that certainstatesareneverreached,orthatsomestatesarereachedin(cid:12)nitetime. The processofprovingthesekindsofstatementsiscalledveri(cid:12)cation. Manyveri(cid:12)cation tools for hybrid systems have emerged in the last ten years. They all depend on a model of the system, which will in practice be an approximation of the real system. Therefore, it would be desirable to learn how large the model errors can be,beforetheveri(cid:12)cationisnotvalidanymore. Inthisthesis,averi(cid:12)cationmethod forpiecewisea(cid:14)nesystemsispresented,whereboundsontheallowedmodelerrors are given along with the veri(cid:12)cation. i Acknowledgments Acknowledgments usually follow a rather standardized pattern. The main reason for this is probably that it is di(cid:14)cult to always (cid:12)nd new ways of expressing one’s gratitude. This acknowledgment is no exception. Nevertheless, even if the phrases are used many times before, I do mean all of them. With this in mind, (cid:12)rst of all I would like to thank my supervisor Professor Lennart Ljung, for excellent guidance and support during my time here at the Division of Automatic Control. I would also like to thank Professor Alexander Nazin, for a fruitful collaboration with many nice and interesting discussions, and for many valuable remarks on preliminary versions of the thesis. Also Dr. Alberto Bemporad deserves many thanks, for a nice and rewarding collaboration and for letting me visit the control group in the wonderful city of Siena. ThethesishasbeenproofreadbyMartinEnqvist, MarkusGerdin, DavidLind- gren, and Fredrik Tja(cid:127)rnstro(cid:127)m, for which I am extremely grateful. Earlier versions of the text have also been read by Ola Ha(cid:127)rkeg(cid:23)ard, Frida Gunnarsson, and Johan L(cid:127)ofberg. Your comments and remarks have been of great value and without doubt improved the quality of the thesis considerably. I would also like to thank M(cid:23)ans O(cid:127)string, Gustaf Hendeby, Rickard Karlsson, and Mikael Norrlo(cid:127)f for help with LATEX problems and similar issues. Ulla Salaneck has always been helpful when it comes to administrative and practical problems, and deserves much gratitude. Ola Ha(cid:127)rkeg(cid:23)ard and Fredrik Tja(cid:127)rnstro(cid:127)m also deserve special thanks for putting up with all kinds of questions with a never-ending en- thusiasm. In addition, many other people have been helpful during various phases of my work, and I thank all of you for your assistance. This work has been supported by the ECSEL graduate school in Linko(cid:127)ping, which is gratefully acknowledged. The spirit and atmosphere in the Control and Communication group is a great source of inspiration, not to be forgotten, and I would like to thank everyone in the group for being a part of this. Finally, I would like to thank Karin, for all the happiness we share and for always being there when I need you. You are the most valuable part of my life. Linko(cid:127)ping, March 2003 Jacob Roll iii iv Contents Notation xi 1 Introduction 1 1.1 Nonlinear Systems and Models . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.2 Some Speci(cid:12)c Nonlinear Model Classes. . . . . . . . . . . . . 4 1.1.3 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 System Identi(cid:12)cation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.1 Prediction Error Methods . . . . . . . . . . . . . . . . . . . . 7 1.2.2 Identi(cid:12)cation of Piecewise A(cid:14)ne Systems . . . . . . . . . . . 8 1.2.3 Nonparametric Methods and Local Modelling . . . . . . . . . 9 1.3 Veri(cid:12)cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.1 Robust Veri(cid:12)cation . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 I Local Modelling Using Direct Weight Optimization 19 2 Nonparametric Methods and Local Modelling 21 v vi Contents 2.1 Introduction and Problem Formulation . . . . . . . . . . . . . . . . . 22 2.2 Kernel Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3 Local Polynomial Modelling . . . . . . . . . . . . . . . . . . . . . . . 27 2.4 Di(cid:11)erent Performance Criteria . . . . . . . . . . . . . . . . . . . . . 30 2.4.1 The MSE and MISE Criteria . . . . . . . . . . . . . . . . . . 30 2.4.2 The Mean Squared Prediction Error and Risk Function . . . 32 2.4.3 Classical Methods . . . . . . . . . . . . . . . . . . . . . . . . 33 2.4.4 Direct Plug-In Methods . . . . . . . . . . . . . . . . . . . . . 35 2.4.5 The Worst-Case MSE Criterion . . . . . . . . . . . . . . . . . 36 2.5 Kernel Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.5.1 Optimal Kernels . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.6 Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.7 A Direct Weight Optimization Approach . . . . . . . . . . . . . . . . 40 3 Local DWO Modelling of Univariate Functions 43 3.1 The DWO Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.1.1 Minimizing an Upper Bound on the Worst-Case MSE . . . . 45 3.2 Some Properties of the Approach . . . . . . . . . . . . . . . . . . . . 48 3.2.1 Automatic Finite Bandwidth and Boundary Adaptation . . . 48 3.2.2 Explicit Expressions for the Optimal Weights . . . . . . . . . 56 3.2.3 Expressions for Nonnegative Weights . . . . . . . . . . . . . . 57 3.2.4 Relation to Local Polynomial Modelling . . . . . . . . . . . . 59 3.2.5 Asymptotic Behavior . . . . . . . . . . . . . . . . . . . . . . . 60 3.2.6 The Estimated Function . . . . . . . . . . . . . . . . . . . . . 62 3.2.7 Global Models . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.4 Proof of the Asymptotic Expressions in Theorem 3.4 . . . . . . . . . 67 4 Local DWO Modelling of Multivariate Functions 71 4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5 Using Prior Knowledge 79 5.1 The Univariate Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.1.1 Class F =F (L;(cid:14);(cid:1)) . . . . . . . . . . . . . . . . . . . . . . 81 2 5.1.2 Class F =F (L;(cid:1)) . . . . . . . . . . . . . . . . . . . . . . . 83 2 5.1.3 Class F =F (L;0) . . . . . . . . . . . . . . . . . . . . . . . . 85 2 5.1.4 Class F =F (L) . . . . . . . . . . . . . . . . . . . . . . . . . 86 2 5.1.5 QP Formulations . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.1.6 Proofs of Theorems 5.2 and 5.4 . . . . . . . . . . . . . . . . . 89 5.1.7 Adjusting the Estimate . . . . . . . . . . . . . . . . . . . . . 94 5.2 Estimating Multivariate Functions . . . . . . . . . . . . . . . . . . . 95 5.3 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Contents vii 6 Other Extensions 99 6.1 Estimating the Derivative . . . . . . . . . . . . . . . . . . . . . . . . 99 6.1.1 Class F =F (L;(cid:14);(cid:1)) . . . . . . . . . . . . . . . . . . . . . . 100 2 6.1.2 Class F =F (L;(cid:1)) . . . . . . . . . . . . . . . . . . . . . . . 102 2 6.1.3 Class F =F (L) . . . . . . . . . . . . . . . . . . . . . . . . . 104 2 6.1.4 QP Formulations . . . . . . . . . . . . . . . . . . . . . . . . . 104 6.1.5 CanWeUsetheDerivativeEstimatetoImprovetheFunction Estimate? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.2 Minimizing the Exact Worst-Case MSE . . . . . . . . . . . . . . . . 106 6.2.1 Maximizing the MSE for Given Weights . . . . . . . . . . . . 108 6.2.2 Properties of the Exact Worst-Case MSE Solution . . . . . . 109 6.3 Other Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 7 Conclusions 113 7.1 Using the DWO Approach for Dynamic Systems . . . . . . . . . . . 115 7.2 Adaptive Bandwidth Selection . . . . . . . . . . . . . . . . . . . . . 116 7.3 Structure of the Regression Vector . . . . . . . . . . . . . . . . . . . 118 7.4 Algorithmic and Implementation Issues . . . . . . . . . . . . . . . . 118 II Identi(cid:12)cation of Piecewise A(cid:14)ne Systems 121 8 Prediction Error Methods for System Identification 123 8.1 Prediction Error Methods . . . . . . . . . . . . . . . . . . . . . . . . 123 8.2 Numerical Minimization . . . . . . . . . . . . . . . . . . . . . . . . . 124 8.3 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 9 Piecewise Affine Systems 127 9.1 Continuous Time Models . . . . . . . . . . . . . . . . . . . . . . . . 127 9.1.1 Switched Systems . . . . . . . . . . . . . . . . . . . . . . . . 128 9.2 Discrete Time Models . . . . . . . . . . . . . . . . . . . . . . . . . . 129 9.2.1 Models in Regression Form . . . . . . . . . . . . . . . . . . . 129 9.2.2 Chua’s Canonical Representation and Hinging Hyperplane Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 9.2.3 Representations with Fixed Regions . . . . . . . . . . . . . . 133 9.3 State Jumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 9.4 Control and Analysis of Piecewise A(cid:14)ne Systems . . . . . . . . . . . 134 10 Identification of Piecewise Affine Systems 135 10.1 Existing Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 10.1.1 Identifying All Parameters Simultaneously . . . . . . . . . . . 138 10.1.2 Adding One Partition at a Time . . . . . . . . . . . . . . . . 138 10.1.3 Finding Regions and Models in Several Steps . . . . . . . . . 142 10.1.4 Using Predetermined Regions . . . . . . . . . . . . . . . . . . 145 10.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 viii Contents 11 PWA Identification Using MILP/MIQP 149 11.1 Formulating the Identi(cid:12)cation Problem as an MILP/MIQP Problem 151 11.1.1 Reformulating the Criterion Function . . . . . . . . . . . . . 152 11.1.2 Reformulating the Constraints . . . . . . . . . . . . . . . . . 153 11.1.3 Restricting the Search Space . . . . . . . . . . . . . . . . . . 156 11.1.4 Some Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 157 11.2 Extensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 11.2.1 Unknown Number of Positive Max Functions . . . . . . . . . 161 11.2.2 Discontinuous Hinging Hyperplane Models . . . . . . . . . . 164 11.2.3 Robust Hinging Hyperplane Models . . . . . . . . . . . . . . 166 11.2.4 General PWARX Systems . . . . . . . . . . . . . . . . . . . . 167 11.3 Computational Complexity and Theoretical Aspects . . . . . . . . . 169 11.3.1 Number of Feasible (cid:14) Combinations . . . . . . . . . . . . . . 169 11.4 Piecewise A(cid:14)ne Wiener Models . . . . . . . . . . . . . . . . . . . . . 172 11.4.1 Reformulating the Identi(cid:12)cation Problem . . . . . . . . . . . 173 11.4.2 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . 178 11.5 Using Suboptimal MILP/MIQP Solutions . . . . . . . . . . . . . . . 179 11.6 Using Change Detection to Reduce Complexity . . . . . . . . . . . . 184 11.6.1 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 11.6.2 Approximating General Nonlinear Systems . . . . . . . . . . 188 11.7 Related Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 11.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 III Robust Veri(cid:12)cation 193 12 Robust Verification 195 12.1 Some Notation and Assumptions . . . . . . . . . . . . . . . . . . . . 196 12.2 Problem Formulation for Known Systems . . . . . . . . . . . . . . . 197 12.3 The Problem of Robust Veri(cid:12)cation . . . . . . . . . . . . . . . . . . 199 12.4 Solutions to the Robust Veri(cid:12)cation Problems . . . . . . . . . . . . . 201 12.4.1 (cid:1)(v)=0, (cid:13) =0, (cid:14)(v) is Varied . . . . . . . . . . . . . . . . . 202 12.4.2 (cid:13) =0, (cid:1)(v) and (cid:14)(v) are Varied . . . . . . . . . . . . . . . . 202 12.4.3 Multiple Requirements . . . . . . . . . . . . . . . . . . . . . . 204 12.4.4 (cid:1)=0, (cid:14) and (cid:13) are Varied . . . . . . . . . . . . . . . . . . . . 204 12.4.5 (cid:1), (cid:14) and (cid:13) are Varied . . . . . . . . . . . . . . . . . . . . . . 206 12.5 Interpretations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 12.6 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . 207 12.7 Extensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 12.7.1 Inner Approximations . . . . . . . . . . . . . . . . . . . . . . 208 12.7.2 Switched Systems . . . . . . . . . . . . . . . . . . . . . . . . 210 12.8 An Example: A Chemical Reactor . . . . . . . . . . . . . . . . . . . 210 12.8.1 System Model. . . . . . . . . . . . . . . . . . . . . . . . . . . 211 12.8.2 What to Verify . . . . . . . . . . . . . . . . . . . . . . . . . . 212 12.8.3 Deriving Bounds for Parameter Uncertainties . . . . . . . . . 213

Description:
To avoid this, an approach named direct weight optimization is pro- posed Another way of approaching the nonlinear system identification problem is to.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.