ebook img

Linear and Nonlinear Multivariable Feedback Control: A Classical Approach PDF

348 Pages·2008·6.83 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Linear and Nonlinear Multivariable Feedback Control: A Classical Approach

JWBK226-FM JWBK226-Gasparyan December18,2007 15:4 CharCount= Linear and Nonlinear Multivariable Feedback Control LinearandNonlinearMultivariableFeedbackControl:AClassicalApproach OlegN.Gasparyan (cid:2)C 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-06104-6 i JWBK226-FM JWBK226-Gasparyan December18,2007 15:4 CharCount= Linear and Nonlinear Multivariable Feedback Control: A Classical Approach Oleg N. Gasparyan StateEngineeringUniversityofArmenia iii JWBK226-FM JWBK226-Gasparyan December18,2007 15:4 CharCount= Copyright(cid:2)C 2008 JohnWiley&SonsLtd,BaffinsLane,Chichester WestSussex,PO191UD,England National 01243779777 International (+44)1243779777 Email(forordersandcustomerserviceenquiries):[email protected] VisitourHomePageonwww.wileyeurope.comorwww.wiley.com AllRightsReserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystemortransmittedinany formorbyanymeans,electronic,mechanical,photocopying,recording,scanningorotherwise,exceptunderthe termsoftheCopyright,DesignsandPatentsAct1988orunderthetermsofalicenceissuedbytheCopyright LicensingAgencyLtd,90TottenhamCourtRoad,LondonW1T4LP,UK,withoutthepermissioninwritingofthe Publisher.RequeststothePublishershouldbeaddressedtothePermissionsDepartment,JohnWiley&SonsLtd, TheAtrium,SouthernGate,Chichester,WestSussexPO198SQ,England,[email protected],or faxedto(+44)1243770571. Thispublicationisdesignedtoprovideaccurateandauthoritativeinformationinregardtothesubjectmatter covered.ItissoldontheunderstandingthatthePublisherisnotengagedinrenderingprofessionalservices.If professionaladviceorotherexpertassistanceisrequired,theservicesofacompetentprofessionalshouldbesought. OtherWileyEditorialOffices JohnWiley&SonsInc.,111RiverStreet,Hoboken,NJ07030,USA Jossey-Bass,989MarketStreet,SanFrancisco,CA94103-1741,USA Wiley-VCHVerlagGmbH,Boschstr.12,D-69469Weinheim,Germany JohnWiley&SonsAustraliaLtd,33ParkRoad,Milton,Queensland4064,Australia JohnWiley&Sons(Asia)PteLtd,2ClementiLoop#02-01,JinXingDistripark,Singapore129809 JohnWiley&SonsCanadaLtd,6045FreemontBLVD,Mississauga,Ontario,CanadaM9W1L1 Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbe availableinelectronicbooks. LibraryofCongressCataloging-in-PublicationData Gasparyan,Oleg. Linearandnonlinearmultivariablefeedbackcontrol:aclassicalapproach/OlegGasparyan. p. cm. Includesbibliographicalreferencesandindex. ISBN978-0-470-06104-6(cloth) 1.Controltheory. 2.Feedbackcontrolsystems. 3.Functionsofcomplexvariables. I.Title. QA402.3.G372008 629.8(cid:3)36—dc22 2007044550 BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN978-0-470-06104-6 Typesetin10/12ptTimesbyAptaraInc.,NewDelhi,India PrintedandboundinGreatBritainbyAntonyRoweLtd,Chippenham,Wiltshire Thisbookisprintedonacid-freepaperresponsiblymanufacturedfromsustainableforestry inwhichatleasttwotreesareplantedforeachoneusedforpaperproduction. iv JWBK226-FM JWBK226-Gasparyan December18,2007 15:4 CharCount= Tomybelovedfamily:Lilit,Yulia,andNikolay v JWBK226-FM JWBK226-Gasparyan December18,2007 15:4 CharCount= Contents Preface xi PartI LinearMultivariableControlSystems 1 CanonicalrepresentationsandstabilityanalysisoflinearMIMOsystems 3 1.1 Introduction 3 1.2 GenerallinearsquareMIMOsystems 3 1.2.1 TransfermatricesofgeneralMIMOsystems 3 1.2.2 MIMOsystemzerosandpoles 5 1.2.3 Spectralrepresentationoftransfermatrices:characteristic transferfunctionsandcanonicalbasis 10 1.2.4 StabilityanalysisofgeneralMIMOsystems 19 1.2.5 Singularvaluedecompositionoftransfermatrices 31 1.3 UniformMIMOsystems 40 1.3.1 Characteristictransferfunctionsandcanonicalrepresentations ofuniformMIMOsystems 41 1.3.2 StabilityanalysisofuniformMIMOsystems 43 1.4 NormalMIMOsystems 51 1.4.1 CanonicalrepresentationsofnormalMIMOsystems 51 1.4.2 CirculantMIMOsystems 53 1.4.3 AnticirculantMIMOsystems 62 1.4.4 Characteristictransferfunctionsofcomplexcirculantand anticirculantsystems 70 1.5 Multivariablerootloci 74 1.5.1 RootlociofgeneralMIMOsystems 76 1.5.2 Rootlociofuniformsystems 89 1.5.3 Rootlociofcirculantandanticirculantsystems 93 2 PerformanceanddesignoflinearMIMOsystems 100 2.1 Introduction 100 2.2 Generalizedfrequencyresponsecharacteristicsandaccuracyoflinear MIMOsystemsundersinusoidalinputs 101 2.2.1 FrequencycharacteristicsofgeneralMIMOsystems 101 2.2.2 FrequencycharacteristicsandoscillationindexofnormalMIMOsystems 117 2.2.3 FrequencycharacteristicsandoscillationindexofuniformMIMOsystems 121 vii JWBK226-FM JWBK226-Gasparyan December18,2007 15:4 CharCount= viii Contents 2.3 DynamicalaccuracyofMIMOsystemsunderslowlychanging deterministicsignals 124 2.3.1 MatricesoferrorcoefficientsofgeneralMIMOsystems 124 2.3.2 Dynamicalaccuracyofcirculant,anticirculantanduniform MIMOsystems 129 2.3.3 AccuracyofMIMOsystemswithrigidcross-connections 132 2.4 StatisticalaccuracyoflinearMIMOsystems 135 2.4.1 AccuracyofgeneralMIMOsystemsunderstationary stochasticsignals 135 2.4.2 StatisticalaccuracyofnormalMIMOsystems 139 2.4.3 StatisticalaccuracyofuniformMIMOsystems 141 2.4.4 Formulaeformeansquareoutputsofcharacteristicsystems 145 2.5 DesignoflinearMIMOsystems 151 PartII NonlinearMultivariableControlSystems 171 3 Studyofone-frequencyself-oscillationinnonlinearharmonically linearizedMIMOsystems 173 3.1 Introduction 173 3.2 Mathematicalfoundationsoftheharmoniclinearizationmethodfor one-frequencyperiodicalprocessesinnonlinearMIMOsystems 181 3.3 One-frequencylimitcyclesingeneralMIMOsystems 184 3.3.1 Necessaryconditionsfortheexistenceandinvestigationofthe limitcycleinharmonicallylinearizedMIMOsystems 184 3.3.2 StabilityofthelimitcycleinMIMOsystems 194 3.4 LimitcyclesinuniformMIMOsystems 199 3.4.1 Necessaryconditionsfortheexistenceandinvestigationoflimit cyclesinuniformMIMOsystems 199 3.4.2 Analysisofthestabilityoflimitcyclesinuniformsystems 205 3.5 LimitcyclesincirculantandanticirculantMIMOsystems 214 3.5.1 Necessaryconditionsfortheexistenceandinvestigationoflimit cyclesincirculantandanticirculantsystems 214 3.5.2 Limitcyclesinuniformcirculantandanticirculantsystems 229 4 Forcedoscillationandgeneralizedfrequencyresponsecharacteristics ofnonlinearMIMOsystems 236 4.1 Introduction 236 4.2 NonlineargeneralMIMOsystems 244 4.2.1 One-frequencyforcedoscillationandcapturingingeneralMIMOsystems 244 4.2.2 Generalizedfrequencyresponsecharacteristicsandoscillation indexofstablenonlinearMIMOsystems 251 4.2.3 Generalizedfrequencyresponsecharacteristicsoflimitcycling MIMOsystems 260 4.3 NonlinearuniformMIMOsystems 265 4.3.1 One-frequencyforcedoscillationandcapturinginuniformsystems 265 4.3.2 Generalizedfrequencyresponsecharacteristicsofstable nonlinearuniformsystems 268 JWBK226-FM JWBK226-Gasparyan December18,2007 15:4 CharCount= Contents ix 4.3.3 Generalizedfrequencyresponsecharacteristicsoflimitcycling uniformsystems 271 4.4 Forcedoscillationsandfrequencyresponsecharacteristicsalongthe canonicalbasisaxesofnonlinearcirculantandanticirculantsystems 274 4.5 DesignofnonlinearMIMOsystems 278 5 AbsolutestabilityofnonlinearMIMOsystems 284 5.1 Introduction 284 5.2 AbsolutestabilityofgeneralanduniformMIMOsystems 287 5.2.1 MultidimensionalPopov’scriterion 287 5.2.2 ApplicationoftheBodediagramsandNicholsplots 293 5.2.3 DegreeofstabilityofnonlinearMIMOsystems 296 5.3 AbsolutestabilityofnormalMIMOsystems 299 5.3.1 GeneralizedAizerman’shypothesis 301 5.4 Off-axiscircleandparaboliccriteriaoftheabsolutestabilityofMIMOsystems 304 5.4.1 Off-axiscirclecriterion 305 5.4.2 Logarithmicformoftheoff-axiscriterionofabsolutestability 309 5.4.3 Paraboliccriterionofabsolutestability 313 5.5 Multidimensionalcirclecriteriaofabsolutestability 314 5.5.1 GeneralandnormalMIMOsystems 316 5.5.2 Inverseformofthecirclecriterionforuniformsystems 319 5.6 Multidimensionalcirclecriteriaoftheabsolutestabilityofforcedmotions 321 Bibliography 327 Index 335 JWBK226-FM JWBK226-Gasparyan December18,2007 15:4 CharCount= Preface Thistextbookprovidesaunifiedcontroltheoryoflinearandnonlinearmultivariablefeedback systems,alsocalledmulti-inputmulti-output(MIMO)systems,asastraightforwardextension of the classical control theory. The central idea of the book is to show how the classical (frequency- and root-domain) engineering methods look in the multidimensional case, and howapractisingengineerorresearchercanapplythemtotheanalysisanddesignoflinearand nonlinearMIMOsystems. Atpresent,thereisagreatnumberoffundamentaltextbooksonclassicalfeedbackcontrol asappliedtosingle-inputsingle-output(SISO)systems,suchasthebooksbyDorfandBishop (1992), K. Ogata (1970), Franklin, Powell and Emami-Naeini (1991), Atherton (1975) and E.Popov(1973),thelasttwobeingdevotedtononlinearSISOsystems,andmanyothers.A generalqualityofallthesebooksisaunitedconceptualapproachtointroducingtheclassical control theory, as well as clearly indicated branches of that theory; in fact, a lecturer can successfully use any of these books in teaching his course on related subjects. On the other hand,therearemanyremarkabletextbooksandmonographsonmultivariablefeedbackcontrol, butthesituationhereisnotsoplain.Historically,attheoutset,thedevelopmentofmultivariable controltheorywasconductedindifferentwaysandmanners,varyingfrommassiveeffortsto extend directly the basic classical methods and techniques, to no less massive attempts to reformulateradicallyandeven‘abolish’theclassicalheritageofcontroltheory.Besides,the initial stages of formation of multivariable control essentially coincided with the advent of state-space methods and approaches, and with rapid development of optimal control theory, equallydealingwithSISOandMIMOsystems.Atlast,ataroundthattime,theretherobust control theory also applicable to both SISO and MIMO systems emerged. As a result, the notion of ‘modern’ multivariable control is so manifold and embraces so many directions andaspectsoffeedbackcontrolthatitisdifficulttolistthemallwithoutrunningtheriskof missing something significant. Nevertheless, it is obvious that optimal, adaptive and robust methods (and their variations) are predominant in the scientific and technical literature, and advancesinthesemethodsconsiderablyexceedtheachievementsofthe‘classical’branchin multivariablecontrol.Atthesametime,itshouldbeacknowledgedthatmodernMIMOcontrol theoryjust‘jumpedover’manyimportantproblemsoftheclassicaltheoryandnowthereisan evidentgapbetweenthetopicspresentedinmosttextbooksonSISOcontrolandthoseinmany booksonmultivariablecontrol(SkogestadandPostlethwaite2005;Safonov1980;Maciejowski 1989,etc.). Thegoalofthisbookistobridgethatgapandtoprovideaholisticmultivariablecontrol theory as a direct and natural extension of the classical control theory, for both linear and xi

Description:
Automatic feedback control systems play crucial roles in many fields, including manufacturing industries, communications, naval and space systems. At its simplest, a control system represents a feedback loop in which the difference between the ideal (input) and actual (output) signals is used to mod
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.