ebook img

Linear Algebra: Step by Step PDF

617 Pages·2013·8.43 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Linear Algebra: Step by Step

Linear Algebra Linear Algebra Step by Step Kuldeep Singh SeniorLecturerinMathematics UniversityofHertfordshire 3 3 GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries (cid:2)c KuldeepSingh2014 Themoralrightsoftheauthorhavebeenasserted FirstEditionpublishedin2014 Impression:1 Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica BritishLibraryCataloguinginPublicationData Dataavailable LibraryofCongressControlNumber:2013947001 ISBN978–0–19–965444–4 PrintedintheUKby Bell&BainLtd,Glasgow LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork. Preface My interest in mathematics began at school. I am originally of Sikh descent, and as a young child oftenfoundEnglishdifficulttocomprehend,butIdiscoveredanaffinitywithmathematics,auniversal languagethatIcouldbegintolearnfromthesamestartpointasmypeers. Linearalgebraisafundamentalareaofmathematics,andisarguablythemostpowerfulmathematical tooleverdeveloped.Itisacoretopicofstudywithinfieldsasdiverseasbusiness,economics,engineer- ing,physics,computerscience,ecology,sociology,demographyandgenetics.Foranexampleoflinear algebraatwork,oneneedlooknofurtherthantheGooglesearchengine,whichreliesonlinearalgebra toranktheresultsofasearchwithrespecttorelevance. Mypassionhasalwaysbeentoteach,andIhaveheldthepositionofSeniorLecturerinMathematics at the University of Hertfordshire for over twenty years, where I teach linear algebra to entry level undergraduates.IamalsotheauthorofEngineeringMathematicsThroughApplications,abookthatI amproudtosayisusedwidelyasthebasisforundergraduatestudiesinmanydifferentcountries.Ialso hostandregularlyupdateawebsitededicatedtomathematics. AttheUniversityofHertfordshirewehaveoveronehundredmathematicsundergraduates.Inthe pastwehavebasedourlinearalgebracoursesonvariousexistingtextbooks,butingeneralstudents havefoundthemhardtodigest;oneofmyprimaryconcernshasbeeninfindingrigorous,yetaccessible textbookstorecommendtomystudents.Becauseofthepopularityofmypreviouslypublishedbook,I havefeltcompelledtoconstructabookonlinearalgebrathatbridgestheconsiderabledividebetween schoolandundergraduatemathematics. IamsomewhatfortunateinthatIhavehadsomanystudentstoassistmeinevaluatingeachchapter. Inresponsetotheirreactions,Ihavemodified,expandedandaddedsectionstoensurethatitscontent entirelyencompassestheabilityofstudentswithalimitedmathematicalbackground,aswellasthe moreadvancedscholarsundermytutelage.Ibelievethatthishasallowedmetocreateabookthatis unparalleledinthesimplicityofitsexplanation,yetcomprehensiveinitsapproachtoeventhemost challengingaspectsofthistopic. Level This book is intended for first- and second-year undergraduates arriving with average mathematics grades. Many students find the transition between school and undergraduate mathematics difficult, andthisbookspecificallyaddressesthatgapandallowsseamlessprogression.Itassumeslimitedprior mathematicalknowledge,yetalsocoversdifficultmaterialandanswerstoughquestionsthroughtheuse ofclearexplanationandawealthofillustrations.Theemphasisofthebookisonstudentslearningfor themselvesbygraduallyabsorbingclearlypresentedtext,supportedbypatterns,graphsandassociated questions.Thetextallowsthestudenttograduallydevelopanunderstandingofatopic,withoutthe needforconstantadditionalsupportfromatutor. PedagogicalIssues Thestrengthofthetextisinthelargenumberofexamplesandthestep-by-stepexplanationofeachtopic asitisintroduced.Itiscompiledinawaythatallowsdistancelearning,withexplicitsolutionstoallof vi PREFACE thesetproblemsfreelyavailableonline<http://www.oup.co.uk/companion/singh>.Themiscellaneous exercisesattheendofeachchaptercomprisequestionsfrompastexampapersfromvariousuniversities, helpingtoreinforcethereader’sconfidence.Alsoincludedareshorthistoricalbiographiesoftheleading playersinthefieldoflinearalgebra.Thesearegenerallyplacedatthebeginningofasectiontoengage theinterestofthestudentfromtheoutset. Publishedtextbooksonthissubjecttendtoberatherstaticintheirpresentation.Bycontrast,mybook strivestobesignificantlymoredynamic,andencouragestheengagementofthereaderwithfrequent questionandanswersections.Thequestion–answerelementissprinkledliberallythroughoutthetext, consistentlytestingthestudent’sunderstandingofthemethodsintroduced,ratherthanrequiringthem torememberbyrote. Thesimpleyetconcisenatureofitscontentisspecificallydesignedtoaidtheweakerstudent,but itsrigorousapproachandcomprehensivemannermakeitentirelyappropriatereferencematerialfor mathematiciansateverylevel.IncludedintheonlineresourcewillbeaselectionofMATLABscripts, providedforthosestudentswhowishtoprocesstheirworkusingacomputer. Finally,itmustbeacknowledgedthatlinearalgebracanappearabstractwhenfirstencounteredby astudent.Toshowoffsomeofitspossibilitiesandpotential,interviewswithleadingacademicsand practitionershavebeenplacedbetweenchapters,givingreadersatasteofwhatmaybetocomeonce theyhavemasteredthispowerfulmathematicaltool. Acknowledgements IwouldparticularlyliketothankTimothyPeacockforhissignficanthelpinimprovingthistext.In additionIwanttothankSandraStarkeforherconsiderablecontributioninmakingthistextaccessible. ThankstoototheOUPteam,inparticularKeithMansfield,VikiMortimer,SmitaGuptaandClare Charles. Dedication ToShaheedBibiParamjitKaur Contents 1 LinearEquationsandMatrices 1 1.1 SystemsofLinearEquations 1 1.2 GaussianElimination 12 1.3 VectorArithmetic 27 1.4 ArithmeticofMatrices 41 1.5 MatrixAlgebra 57 1.6 TheTransposeandInverseofaMatrix 75 1.7 TypesofSolutions 91 1.8 TheInverseMatrixMethod 105 DesHighamInterview 127 2 EuclideanSpace 129 2.1 PropertiesofVectors 129 2.2 FurtherPropertiesofVectors 143 2.3 LinearIndependence 159 2.4 BasisandSpanningSet 171 ChaoYangInterview 190 3 GeneralVectorSpaces 191 3.1 IntroductiontoGeneralVectorSpaces 191 3.2 SubspaceofaVectorSpace 202 3.3 LinearIndependenceandBasis 216 3.4 Dimension 229 3.5 PropertiesofaMatrix 239 3.6 LinearSystemsRevisited 254 JanetDrewInterview 275 4 InnerProductSpaces 277 4.1 IntroductiontoInnerProductSpaces 277 4.2 InequalitiesandOrthogonality 290 4.3 OrthonormalBases 306 4.4 OrthogonalMatrices 321 AnshulGuptaInterview 338 5 LinearTransformations 339 5.1 IntroductiontoLinearTransformations 339 5.2 KernelandRangeofaLinearTransformation 352 5.3 RankandNullity 364 5.4 InverseLinearTransformations 372 5.5 TheMatrixofaLinearTransformation 389 5.6 CompositionandInverseLinearTransformations 407 PetrosDrineasInterview 429 viii CONTENTS 6 DeterminantsandtheInverseMatrix 431 6.1 DeterminantofaMatrix 431 6.2 DeterminantofOtherMatrices 439 6.3 PropertiesofDeterminants 455 6.4 LUFactorization 472 FrançoiseTisseurInterview 490 7 EigenvaluesandEigenvectors 491 7.1 IntroductiontoEigenvaluesandEigenvectors 491 7.2 PropertiesofEigenvaluesandEigenvectors 503 7.3 Diagonalization 518 7.4 DiagonalizationofSymmetricMatrices 533 7.5 SingularValueDecomposition 547 BriefSolutions 567 Index 605 ............................................................................................. 1 Linear Equations and Matrices ............................................................................................. SECTION 1.1 SystemsofLinearEquations Bytheendofthissectionyouwillbeableto ● solvealinearsystemofequations ● plotlineargraphsanddeterminethetypeofsolutions 1.1.1 Introductiontolinearalgebra Weareallfamiliarwithsimpleone-lineequations.Anequationiswheretwomathematical expressionsaredefinedasbeingequal.Given3x=6,wecanalmostintuitivelyseethatx mustequal2. However,thesolutionisn’talwaysthiseasytofind,andthefollowingexampledemon- strateshowwecanextractinformationembeddedinmorethanonelineofinformation. ImagineforamomentthatJohnhasboughttwoicecreamsandtwodrinksfor£3.00. HowmuchdidJohnpayforeachitem? Letx=costoficecreamandy=costofdrink,thentheproblemcanbewrittenas 2x+2y=3 Atthispoint,itisimpossibletofindauniquevalueforthecostofeachitem.However,youare thentoldthatJaneboughttwoicecreamsandonedrinkfor£2.50.Withthisadditionalinforma- tion,wecanmodeltheproblemasasystemofequationsandlookforuniquevaluesforthecost oficecreamsanddrinks.Theproblemcannowbewrittenas 2x+2y = 3 2x+y = 2.5 Usingabitofguesswork,wecanseethattheonlysensiblevaluesforxandythatsatisfyboth equationsarex=1andy=0.5.Thereforeanicecreammusthavecost£1.00andadrink£0.50. Ofcourse,thisisanextremelysimpleexample,thesolutiontowhichcanbefoundwith aminimumofcalculation,butlargersystemsofequationsoccurinareaslikeengineering, scienceandfinance.Inordertoreliablyextractinformationfrommultiplelinearequations, we need linear algebra. Generally, the complex scientific, or engineering problem can be solvedbyusinglinearalgebraonlinearequations.

Description:
Linear algebra is a fundamental area of mathematics, and is arguably the most powerful mathematical tool ever developed. It is a core topic of study within fields as diverse as: business, economics, engineering, physics, computer science, ecology, sociology, demography and genetics. For an example o
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.