ebook img

Linear Algebra and Linear Models PDF

147 Pages·2000·0.609 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Linear Algebra and Linear Models

Linear Algebra and Linear Models, Second Edition R.B. Bapat Springer Preface Themainpurposeofthepresentmonographistoprovidearigorousintroduction tothebasicaspectsofthetheoryoflinearestimationandhypothesistesting.The necessaryprerequisitesinmatrices,multivariatenormaldistribution,anddistribu- tionofquadraticformsaredevelopedalongtheway.Themonographisprimarily aimedatadvancedundergraduateandfirst-yearmaster’sstudentstakingcourses inlinearalgebra,linearmodels,multivariateanalysis,anddesignofexperiments. Itshouldalsobeofusetoresearchworkersasasourceofseveralstandardresults andproblems. Somefeaturesinwhichwedeviatefromthestandardtextbooksonthesubject areasfollows. Wedealexclusivelywithrealmatrices,andthisleadstosomenonconventional proofs. One example is the proof of the fact that a symmetric matrix has real eigenvalues.Werelyonranksanddeterminantsabitmorethanisdoneusually. Thedevelopmentinthefirsttwochaptersissomewhatdifferentfromthatinmost texts. Itisnottheintentiontogiveanextensiveintroductiontomatrixtheory.Thus, severalstandardtopicssuchasvariouscanonicalformsandsimilarityarenotfound here.Weoftenderiveonlythoseresultsthatareexplicitlyusedlater.Thelistof factsinmatrixtheorythatareelementary,elegant,butnotcoveredhereisalmost endless. Weputagreatdealofemphasisonthegeneralizedinverseanditsapplications. This amounts to avoiding the “geometric” or the “projections” approach that is favoredbysomeauthorsandtakingrecoursetoamorealgebraicapproach.Partly asapersonalbias,Ifeelthatthegeometricapproachworkswellinprovidingan vi Preface understandingofwhyaresultshouldbetruebuthaslimitationswhenitcomesto provingtheresultrigorously. Thefirstthreechaptersaredevotedtomatrixtheory,linearestimation,andtests oflinearhypotheses,respectively.Chapter4collectsseveralresultsoneigenval- uesandsingularvaluesthatarefrequentlyrequiredinstatisticsbutusuallyarenot provedinstatisticstexts.Thischapteralsoincludessectionsonprincipalcompo- nentsandcanonicalcorrelations.Chapter5preparesthebackgroundforacourse in designs, establishing the linear model as the underlying mathematical frame- work.Thesectionsonoptimalitymaybeusefulasmotivationforfurtherreading inthisresearchareainwhichthereisconsiderableactivityatpresent.Similarly, thelastchaptertriestoprovideaglimpseintotherichnessofatopicingeneralized inverses(rankadditivity)thathasmanyinterestingapplicationsaswell. Severalexercisesareincluded,someofwhichareusedinsubsequentdevelop- ments. Hints are provided for a few exercises, whereas reference to the original sourceisgiveninsomeothercases. IamgratefultoProfessorsAlokeDey,H.Neudecker,K.P.S.BhaskaraRao,and Dr. N. Eagambaram for their comments on various portions of the manuscript. ThanksarealsoduetoB.Ganeshanforhishelpingettingthecomputerprintouts atvariousstages. About the Second Edition Thisisathoroughlyrevisedandenlargedversionofthefirstedition.Besidescor- rectingtheminormathematicalandtypographicalerrors,thefollowingadditions havebeenmade: (1) Afewproblemshavebeenaddedattheendofeachsectioninthefirstfour chapters.Allthechaptersnowcontainsomenewexercises. (2) Completesolutionsorhintsareprovidedtoseveralproblemsandexercises. (3) Twonewsections,oneonthe“volumeofamatrix”andtheotheronthe“star order,”havebeenadded. NewDelhi,India R.B.Bapat Contents Preface v NotationIndex ix 1 VectorSpacesandMatrices 1 1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 VectorSpacesandSubspaces . . . . . . . . . . . . . . . . . . 4 1.3 BasisandDimension . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.6 Nonsingularity . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.7 FrobeniusInequality . . . . . . . . . . . . . . . . . . . . . . . 16 1.8 EigenvaluesandtheSpectralTheorem . . . . . . . . . . . . . 18 1.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.10 HintsandSolutions . . . . . . . . . . . . . . . . . . . . . . . 25 2 LinearEstimation 29 2.1 GeneralizedInverses . . . . . . . . . . . . . . . . . . . . . . . 29 2.2 LinearModel . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3 Estimability . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4 WeighingDesigns . . . . . . . . . . . . . . . . . . . . . . . . 38 2.5 ResidualSumofSquares . . . . . . . . . . . . . . . . . . . . 40 2.6 EstimationSubjecttoRestrictions . . . . . . . . . . . . . . . . 42 2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.8 HintsandSolutions . . . . . . . . . . . . . . . . . . . . . . . 48 viii Contents 3 TestsofLinearHypotheses 51 3.1 SchurComplements . . . . . . . . . . . . . . . . . . . . . . . 51 3.2 MultivariateNormalDistribution . . . . . . . . . . . . . . . . 53 3.3 QuadraticFormsandCochran’sTheorem . . . . . . . . . . . . 57 3.4 One-WayandTwo-WayClassifications . . . . . . . . . . . . . 61 3.5 GeneralLinearHypothesis . . . . . . . . . . . . . . . . . . . 65 3.6 ExtremaofQuadraticForms . . . . . . . . . . . . . . . . . . 67 3.7 MultipleCorrelationandRegressionModels . . . . . . . . . . 69 3.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.9 HintsandSolutions . . . . . . . . . . . . . . . . . . . . . . . 76 4 SingularValuesandTheirApplications 79 4.1 SingularValueDecomposition . . . . . . . . . . . . . . . . . 79 4.2 ExtremalRepresentations . . . . . . . . . . . . . . . . . . . . 81 4.3 Majorization . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.4 PrincipalComponents . . . . . . . . . . . . . . . . . . . . . . 86 4.5 CanonicalCorrelations . . . . . . . . . . . . . . . . . . . . . 88 4.6 VolumeofaMatrix . . . . . . . . . . . . . . . . . . . . . . . 89 4.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.8 HintsandSolutions . . . . . . . . . . . . . . . . . . . . . . . 94 5 BlockDesignsandOptimality 99 5.1 ReducedNormalEquations . . . . . . . . . . . . . . . . . . . 99 5.2 TheC-Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.3 E-,A-,andD-Optimality . . . . . . . . . . . . . . . . . . . . 103 5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.5 HintsandSolutions . . . . . . . . . . . . . . . . . . . . . . . 110 6 RankAdditivity 113 6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.2 CharacterizationsofRankAdditivity . . . . . . . . . . . . . . 114 6.3 GeneralLinearModel . . . . . . . . . . . . . . . . . . . . . . 118 6.4 TheStarOrder . . . . . . . . . . . . . . . . . . . . . . . . . . 122 6.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.6 HintsandSolutions . . . . . . . . . . . . . . . . . . . . . . . 126 Notes 129 References 133 Index 137 1 Vector Spaces and Matrices 1.1 Preliminaries Inthissectionwereviewcertainbasicconcepts.Weconsideronlyrealmatrices. Althoughourtreatmentisself-contained,thereaderisassumedtobefamiliarwith basicoperationsonmatrices.Wealsoassumeknowledgeofelementaryproperties ofthedeterminant. Anm×nmatrixconsistsofmnrealnumbersarrangedinmrowsandncolumns. Wedenotematricesbyboldletters.Theentryinrowiandcolumnj ofthematrix Aisdenotedbyaij.Anm×1matrixiscalledacolumnvectoroforderm;similarly, a1×nmatrixisarowvectorofordern.Anm×nmatrixiscalledasquarematrix ifm(cid:8)n. If A,B are m×n matrices, then A+B is defined as the m×n matrix with (i,j)-entryaij +bij.IfAisamatrixandcisarealnumber,thencAisobtained bymultiplyingeachelementofAbyc. IfAism×p andBisp×n,thentheirproductC (cid:8) ABisanm×nmatrix with(i,j)-entrygivenby (cid:2)p c (cid:8) a b . ij ik kj k(cid:8)1 Thefollowingpropertieshold: (AB)C(cid:8)A(BC), A(B+C)(cid:8)AB+AC, (A+B)C(cid:8)AC+BC.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.