ebook img

Lie Algebras and Applications PDF

192 Pages·2006·1.083 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lie Algebras and Applications

Lecture Notes in Physics EditorialBoard R.Beig,Wien,Austria W.Beiglböck,Heidelberg,Germany W.Domcke,Garching,Germany B.-G.Englert,Singapore U.Frisch,Nice,France P.Hänggi,Augsburg,Germany G.Hasinger,Garching,Germany K.Hepp,Zürich,Switzerland W.Hillebrandt,Garching,Germany D.Imboden,Zürich,Switzerland R.L.Jaffe,Cambridge,MA,USA R.Lipowsky,Golm,Germany H.v.Löhneysen,Karlsruhe,Germany I.Ojima,Kyoto,Japan D.Sornette,Nice,France,andZürich,Switzerland S.Theisen,Golm,Germany W.Weise,Garching,Germany J.Wess,München,Germany J.Zittartz,Köln,Germany TheLectureNotesinPhysics TheseriesLectureNotesinPhysics(LNP),foundedin1969,reportsnewdevelopments in physics research and teaching – quickly and informally, but with a high quality and theexplicitaimtosummarizeandcommunicatecurrentknowledgeinanaccessibleway. Bookspublishedinthisseriesareconceivedasbridgingmaterialbetweenadvancedgrad- uatetextbooksandtheforefrontofresearchtoservethefollowingpurposes: •tobeacompactandmodernup-to-datesourceofreferenceonawell-definedtopic; •toserveasanaccessibleintroductiontothefieldtopostgraduatestudentsandnonspe- cialistresearchersfromrelatedareas; • to be a source of advanced teaching material for specialized seminars, courses and schools. Both monographs and multi-author volumes will be considered for publication. Edited volumes should, however, consist of a very limited number of contributions only. Pro- ceedingswillnotbeconsideredforLNP. Volumes published in LNP are disseminated both in print and in electronic formats, the electronic archive is available at springerlink.com. The series content is indexed, abstracted and referenced by many abstracting and information services, bibliographic networks,subscriptionagencies,librarynetworks,andconsortia. ProposalsshouldbesenttoamemberoftheEditorialBoard,ordirectlytothemanaging editoratSpringer: Dr.ChristianCaron SpringerHeidelberg PhysicsEditorialDepartmentI Tiergartenstrasse17 69121Heidelberg/Germany [email protected] Francesco Iachello Lie Algebras and Applications ABC Author FrancescoIachello DepartmentofPhysics YaleUniversity P.O.Box208120 NewHaven,CT06520-8120 USA E-mail:[email protected] F.Iachello,LieAlgebrasandApplications,Lect.NotesPhys.708 (Springer,BerlinHeidelberg2006),DOI10.1007/b11785361 LibraryofCongressControlNumber:2006929595 ISSN0075-8450 ISBN-10 3-540-36236-3SpringerBerlinHeidelbergNewYork ISBN-13 978-3-540-36236-4SpringerBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsare liableforprosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springer.com (cid:1)c Springer-VerlagBerlinHeidelberg2006 Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. Typesetting:bytheauthorandtechbooksusingaSpringerLATEXmacropackage Coverdesign:design&productionGmbH,Heidelberg Printedonacid-freepaper SPIN:11785361 54/techbooks 543210 Preface In the second part of the 20th century, algebraic methods have emerged as a powerful tool to study theories of physical phenomena, especially those of quantal systems. The framework of Lie algebras, initially introduced by So- phusLieinthelastpartofthe19thcentury,hasbeenconsiderablyexpanded to include graded Lie algebras, infinite-dimensional Lie algebras, and other algebraic constructions. Algebras that were originally introduced to describe certainpropertiesofaphysicalsystem,inparticularbehaviorunderrotations and translations, have now taken center stage in the construction of physical theories. This book contains a set of notes from lectures given at Yale Univer- sity and other universities and laboratories in the last 20 years. The notes are intended to provide an introduction to Lie algebras at the level of a one-semester graduate course in physics. Lie algebras have been particularly useful in spectroscopy, where they were introduced by Eugene Wigner and Giulio Racah. Racah’s lectures were given at Princeton University in 1951 (Group Theory and Spectroscopy) and they provided the impetus for the initial applications in atomic and nuclear physics. In the intervening years, manyotherapplicationshavebeenmade.Thisbookcontainsabriefaccount of some of these applications to the fields of molecular, atomic, nuclear, and particle physics. The application of Lie algebraic methods in Physics is so widethatoftenstudentsareoverwhelmedbythesheeramountofmaterialto absorb.Thisbookisintendedtogiveabasicintroductiontothemethodand how it is applied in practice, with emphasis on bosonic systems as encoun- tered in molecules (vibron model), and in nuclei (interacting boson model), and to fermionic systems as encountered in atoms (atomic shell model), and nuclei (nuclear shell model), and hadrons (quark model). Exactly solvable problems in quantum mechanics are also discussed. AssociatedwithaLiealgebrathereisaLiegroup.Althoughtheemphasis of these lecture notes is on Lie algebras, a chapter is devoted to Lie groups and to the relation between Lie algebras and Lie groups. ManyexhaustivebooksexistonthesubjectofLiealgebrasandLiegroups. Reference to these books is made throughout, so that the interested stu- dent can study the subject in depth. A selected number of other books, not VI Preface explicitly mentioned in the text, are also included in the reference list, to serve as additional introductory material and for cross-reference. Intheearlystagesofpreparingthenotes,Ibenefitedfrommanyconversa- tionswithMortonHamermesh,BrianWybourne,AsimBarut,andJin-Quan Chen, who wrote books on the subject, but are no longer with us. This book is dedicated to their memory. I also benefited from many conversations with Robert Gilmore, who has written a book on the subject, and with Phil El- liott, Igal Talmi, Akito Arima, Bruno Gruber, Arno Bo¨hm, Yuval Ne’eman, Marcos Moshinsky, and Yuri Smirnov, David Rowe, who have made major contributions to this field. I am very much indebted to Mark Caprio for a critical reading of the manuscript,andforhisinvaluablehelpinpreparingthefinalversionofthese lecture notes. New Haven Francesco Iachello May 2006 Contents 1 Basic Concepts ........................................... 1 1.1 Definitions............................................. 1 1.2 Lie Algebras ........................................... 1 1.3 Change of Basis ........................................ 3 1.4 Complex Extensions .................................... 4 1.5 Lie Subalgebras ........................................ 4 1.6 Abelian Algebras ....................................... 5 1.7 Direct Sum ............................................ 5 1.8 Ideals (Invariant Subalgebras)............................ 6 1.9 Semisimple Algebras .................................... 7 1.10 Semidirect Sum ........................................ 7 1.11 Killing Form........................................... 8 1.12 Compact and Non-Compact Algebras ..................... 9 1.13 Derivations ............................................ 9 1.14 Nilpotent Algebras ..................................... 10 1.15 Invariant Casimir Operators ............................. 10 1.16 Invariant Operators for Non-Semisimple Algebras........... 12 1.17 Structure of Lie Algebras................................ 12 1.17.1 Algebras with One Element........................ 12 1.17.2 Algebras with Two Elements....................... 12 1.17.3 Algebras with Three Elements ..................... 13 2 Semisimple Lie Algebras.................................. 15 2.1 Cartan-Weyl Form of a (Complex) Semisimple Lie Algebra ................................. 15 2.2 Graphical Representation of Root Vectors ................. 15 2.3 Explicit Construction of the Cartan-Weyl Form ............ 17 2.4 Dynkin Diagrams....................................... 19 2.5 Classification of (Complex) Semisimple Lie Algebras ........ 21 2.6 Real Forms of Complex Semisimple Lie Algebras ........... 21 2.7 Isomorphisms of Complex Semisimple Lie Algebras ......... 21 2.8 Isomorphisms of Real Lie Algebras ....................... 22 2.9 Enveloping Algebra..................................... 23 2.10 Realizations of Lie Algebras ............................. 23 2.11 Other Realizations of Lie Algebras........................ 24 VIII Contents 3 Lie Groups ............................................... 27 3.1 Groups of Transformations .............................. 27 3.2 Groups of Matrices ..................................... 27 3.3 Properties of Matrices................................... 28 3.4 Continuous Matrix Groups .............................. 29 3.5 Examples of Groups of Transformations ................... 32 3.5.1 The Rotation Group in Two Dimensions, SO(2)...... 32 3.5.2 The Lorentz Group in One Plus One Dimension, SO(1,1)......................................... 33 3.5.3 The Rotation Group in Three Dimensions ........... 34 3.5.4 The Special Unitary Group in Two Dimensions, SU(2) 34 3.5.5 Relation Between SO(3) and SU(2) ................ 35 3.6 Lie Algebras and Lie Groups............................. 37 3.6.1 The Exponential Map............................. 37 3.6.2 Definition of Exp................................. 37 3.6.3 Matrix Exponentials .............................. 38 4 Irreducible Bases (Representations) ...................... 39 4.1 Definitions............................................. 39 4.2 Abstract Characterization ............................... 39 4.3 Irreducible Tensors ..................................... 40 4.3.1 Irreducible Tensors with Respect to GL(n) .......... 40 4.3.2 Irreducible Tensors with Respect to SU(n) .......... 41 4.3.3 Irreducible Tensors with Respect to O(n). Contractions 41 4.4 Tensor Representations of Classical Compact Algebras ........................... 42 4.4.1 Unitary Algebras u(n) ............................ 42 4.4.2 Special Unitary Algebras su(n) .................... 42 4.4.3 Orthogonal Algebras so(n), n= Odd ............... 43 4.4.4 Orthogonal Algebras so(n), n= Even............... 43 4.4.5 Symplectic Algebras sp(n), n= Even ............... 43 4.5 Spinor Representations.................................. 44 4.5.1 Orthogonal Algebras so(n), n= Odd ............... 44 4.5.2 Orthogonal Algebras so(n), n= Even............... 44 4.6 Fundamental Representations ............................ 45 4.6.1 Unitary Algebras................................. 45 4.6.2 Special Unitary Algebras .......................... 45 4.6.3 Orthogonal Algebras, n= Odd..................... 45 4.6.4 Orthogonal Algebras, n= Even .................... 46 4.6.5 Symplectic Algebras .............................. 46 4.7 Chains of Algebras ..................................... 46 4.8 Canonical Chains....................................... 46 4.8.1 Unitary Algebras................................. 47 4.8.2 Orthogonal Algebras.............................. 48 Contents IX 4.9 Isomorphisms of Spinor Algebras ......................... 49 4.10 Nomenclature for u(n) .................................. 50 4.11 Dimensions of the Representations........................ 50 4.11.1 Dimensions of the Representations of u(n)........... 51 4.11.2 Dimensions of the Representations of su(n).......... 52 4.11.3 Dimensions of the Representations of A ≡su(n+1) . 52 n 4.11.4 Dimensions of the Representations of B ≡so(2n+1) 52 n 4.11.5 Dimensions of the Representations of C ≡sp(2n).... 53 n 4.11.6 Dimensions of the Representations of D ≡so(2n).... 53 n 4.12 Action of the Elements of g on the Basis B ................ 53 4.13 Tensor Products........................................ 56 4.14 Non-Canonical Chains .................................. 58 5 Casimir Operators and Their Eigenvalues................. 63 5.1 Definitions............................................. 63 5.2 Independent Casimir Operators .......................... 63 5.2.1 Casimir Operators of u(n)......................... 63 5.2.2 Casimir Operators of su(n) ........................ 64 5.2.3 Casimir Operators of so(n), n= Odd ............... 64 5.2.4 Casimir Operators of so(n), n= Even............... 64 5.2.5 Casimir Operators of sp(n), n= Even .............. 65 5.2.6 Casimir Operators of the Exceptional Algebras....... 65 5.3 Complete Set of Commuting Operators.................... 65 5.3.1 The Unitary Algebra u(n) ......................... 66 5.3.2 The Orthogonal Algebra so(n), n= Odd ............ 66 5.3.3 The Orthogonal Algebra so(n), n= Even ........... 66 5.4 Eigenvalues of Casimir Operators......................... 66 5.4.1 The Algebras u(n) and su(n) ...................... 67 5.4.2 The Orthogonal Algebra so(2n+1)................. 69 5.4.3 The Symplectic Algebra sp(2n) .................... 71 5.4.4 The Orthogonal Algebra so(2n) .................... 72 5.5 Eigenvalues of Casimir Operators of Order One and Two .............................................. 74 6 Tensor Operators ......................................... 75 6.1 Definitions............................................. 75 6.2 Coupling Coefficients ................................... 76 6.3 Wigner-Eckart Theorem................................. 77 6.4 Nested Algebras. Racah’s Factorization Lemma ............ 79 6.5 Adjoint Operators ...................................... 81 6.6 Recoupling Coefficients.................................. 83 6.7 Symmetry Properties of Coupling Coefficients.............. 84 6.8 How to Compute Coupling Coefficients.................... 85 6.9 How to Compute Recoupling Coefficients .................. 86 6.10 Properties of Recoupling Coefficients...................... 86 X Contents 6.11 Double Recoupling Coefficients........................... 87 6.12 Coupled Tensor Operators............................... 88 6.13 Reduction Formula of the First Kind...................... 88 6.14 Reduction Formula of the Second Kind.................... 89 7 Boson Realizations ....................................... 91 7.1 Boson Operators ....................................... 91 7.2 The Unitary Algebra u(1) ............................... 92 7.3 The Algebras u(2) and su(2)............................. 93 7.3.1 Subalgebra Chains................................ 93 7.4 The Algebras u(n),n≥3 ................................ 97 7.4.1 Racah Form ..................................... 97 7.4.2 Tensor Coupled Form of the Commutators........... 98 7.4.3 Subalgebra Chains Containing so(3) ................ 99 7.5 The Algebras u(3) and su(3)............................. 99 7.5.1 Subalgebra Chains................................ 100 7.5.2 Lattice of Algebras ............................... 103 7.5.3 Boson Calculus of u(3)⊃so(3)..................... 103 7.5.4 Matrix Elements of Operators in u(3)⊃so(3)........ 105 7.5.5 Tensor Calculus of u(3)⊃so(3) .................... 106 7.5.6 Other Boson Constructions of u(3) ................. 107 7.6 The Unitary Algebra u(4) ............................... 108 7.6.1 Subalgebra Chains not Containing so(3)............. 109 7.6.2 Subalgebra Chains Containing so(3) ................ 109 7.7 The Unitary Algebra u(6) ............................... 115 7.7.1 Subalgebra Chains not Containing so(3)............. 115 7.7.2 Subalgebra Chains Containing so(3) ................ 115 7.8 The Unitary Algebra u(7) ............................... 123 7.8.1 Subalgebra Chain Containing g .................... 124 2 7.8.2 The Triplet Chains ............................... 125 8 Fermion Realizations ..................................... 131 8.1 Fermion Operators ..................................... 131 8.2 Lie Algebras Constructed with Fermion Operators .......... 131 8.3 Racah Form ........................................... 132 8.4 The Algebras u(2j+1).................................. 133 8.4.1 Subalgebra Chain Containing spin(3) ............... 134 8.4.2 The Algebras u(2) and su(2). Spinors ............... 134 8.4.3 The Algebra u(4)................................. 136 8.4.4 The Alge(cid:1)bra u(6)................................. 137 8.5 The Algebra u( (2j +1))............................. 138 i i 8.6 Internal Degrees of Freedom (Different Spaces) ............. 139 8.6.1 The Algebras u(4) and su(4)....................... 139 8.6.2 The Algebras u(6) and su(6)....................... 141 8.7 Internal Degrees of Freedom (Same Space)................. 142

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.