ebook img

Lebedev's type index transforms with the squares of the associated Legendre functions PDF

0.12 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lebedev's type index transforms with the squares of the associated Legendre functions

LEBEDEV’S TYPE INDEX TRANSFORMS WITH THE SQUARES OF THE ASSOCIATED LEGENDRE FUNCTIONS S.YAKUBOVICH 7 1 0 2 n ABSTRACT. Theclassical Lebedev index transform (1967), involving squares andproducts oftheLegendre a functions is generalized on the associated Legendre functions ofan arbitrary order. Mapping properties are J investigatedintheLebesguespaces. Inversionformulasareproved. Asaninterestingapplication,asolutionto 3 theboundaryvalueproblemforathirdorderpartialdifferentialequationisobtained. 1 1. INTRODUCTION AND PRELIMINARY RESULTS ] A In 1967N.N. Lebedevproved(cf. [8]) that the antiderivativeof an arbitrary function f definedon the C interval(1,¥ )andsatisfyingintegrabilityconditions f L ((1,a);(x 1) 1/2dx), f L ((a,¥ );logxdx) 1 − 1 . forsomea>1canbeexpandedintermsofthefollowin∈grepeatedinte−gralforx (1,∈¥ ) h ∈ mat x f(y)dy=2(x2 1)1/2 ¥ t tanh(pt ) P 1/2+it(x) 2 Z1 − Z0 − [ ¥ (cid:2) (cid:3) (y2 1)1/2P 1/2+it(y) Q 1/2+it(y)+Q 1/2 it(y) f(y)dydt , (1.1) 1 × 1 − − − − − Z v wherePn (z),Qn (z) are Legendrefunctionsof th(cid:2)e firstand secondkind, res(cid:3)pectively,(see [4], Vol. I, [3]). 6 Thisexpansiongeneratesapairofthedirectandinverseindextransforms[2],namely, 2 6 ¥ 3 F(t )= (y2 1)1/2P 1/2+it(y) Q 1/2+it(y)+Q 1/2 it(y) f(y)dy (1.2) .0 forallt >0, Z1 − − (cid:2) − − − (cid:3) 1 0 d ¥ 17 f(x)=2dxZ0 t tanh(pt ) P−1/2+it(x) 2(x2−1)1/2F(t )dt (1.3) : for almost all x>0. The main goal of the prese(cid:2)nt paper is t(cid:3)o extend Lebedev’s transforms (1.2), (1.3), v consideringLebedev-likekernels, whichinvolveproductsoftheassociatedLegendrefunctionsofthefirst Xi and second kind of an arbitrarycomplexorder m , correspondingly,Pnm (z),Qnm (z) [3]. We will study them r mappingproperties,proveinversiontheoremsandapplytosolvetheboundaryvalueproblemfora higher a orderPDE.Precisely,wewillconsiderthefollowingoperatoroftheindextransform 2 (Fm f)(t )=√p G (cid:18)12+it −m (cid:19)G (cid:18)12−it −m (cid:19)Z0¥ "P−m 1/2+it s1+y y!# f(y)dy, t ∈R, (1.4) Date:January16,2017. 2000MathematicsSubjectClassification. 44A15,33C10,33C45,44A05. Keywordsandphrases. IndexTransforms,AssociatedLegendrefunctions,modifiedBesselfunctions,Fouriertransform,Mellin transform,Mehler-Focktransform,Boundaryvalueproblem. 1 2 S.Yakubovich anditsadjointone 2 (Gm g)(x)=√p Z−¥¥ G (cid:18)12+it −m (cid:19)G (cid:18)21−it −m (cid:19)"P−m 1/2+it r1+x x!# g(t )dt , x∈R+, (1.5) whereG (z)isEuler’sgamma-functionm C,iistheimaginaryunitandtheintegrationin(1.5)isrealized ∈ withrespecttothelowerindexoftheassociatedLegendrefunctionofthefirstkind.Wenotethatthekernel m P (x), x>1 corresponds to the well-known generalized Mehler-Fock transform [2]. Denoting the 1/2+it ke−rnelof(1.4),(1.5)by 2 F t (x)=√p G (cid:18)12+it −m (cid:19)G (cid:18)21−it −m (cid:19)"P−m 1/2+it r1+x x!# , (1.6) wewillfindforfurtheruseitsrepresentationintermsofFouriercosinetransform[7]anddeduceanordinary differentialequationwithpolynomialcoefficients,whosesolutionisF t (x),employingtheso-calledmethod of the Mellin-Barnes integrals, which is already being successfully applied by the author for other index transforms. In fact, appealingto relation (8.4.41.47)in [5], Vol. III, we find the followingMellin-Barnes integralrepresentationforthekernel(1.6),namely 1 g+i¥ G (s+1/2+it )G (s+1/2 it )G (1/2+s)G ( m s) F t (x)= 2p i g i¥ G (1+s)G (−1+s m ) − − x−sds, x>0, (1.7) Z − − where g is taken from the interval( 1/2, Rem ). The absoluteconvergenceof the integral(1.7)follows immediatelyfromtheStirlingasymp−toticfo−rmulaforthegamma-function[4],Vol. I,becauseforallt R ∈ G (s+1/2+it )GG ((s1++1s/)G2(−1i+t )sG (1m/)2+s)G (−m −s) =O e−p |s||s|−Rem −3/2 , |s|→¥ . (1.8) − (cid:16) (cid:17) Moreover,itcanbedifferentiatedundertheintegralsignanynumberoftimesduetotheabsoluteanduniform convergencebyx x >0. Wehave 0 Lemma1. Let≥x 1,t R, Rem <1/2.Thenthekernel(1.6)hasthefollowingrepresentationinterms ≥ ∈ ofFouriercosinetransformofthesecondkindLegendrefunction,namely x ¥ F t (x)=2 p cos(t u)Q 1/2 m 2xcosh2(u/2)+1 du. (1.9) r Z0 − − (cid:0) (cid:1) Proof. Infact,appealingtothereciprocalformulaeviatheFouriercosinetransform(cf. formula(1.104)in [2]) ¥ p G (2s+1) 1 G (s+1/2+it )G (s+1/2 it )cos(t y)dt = , Res> , (1.10) 0 − 22s+1cosh2s+1(y/2) −2 Z G (2s+1) ¥ cos(t y) G (s+1/2+it )G (s+1/2 it )= dy, (1.11) − 22s 0 cosh2s+1(y/2) Z wereplacethegamma-productG (s+1/2+it )G (s+1/2 it )intheintegral(1.9)byitsintegralrepresen- − tation (1.11) and change the order of integration via Fubini’s theorem. Then, employing the duplication formulaforthegamma-function[4],Vol. I,wederive F t (x)= 2p √1p i 0¥ cocoshs((tu/u2)) gg+i¥i¥ [G (s+G 1(/12+)]s2G (m−)m −s) xcosh2(u/2) −sdsdu Z Z − − (cid:0) (cid:1) IndextransformswiththesquaresandproductsoftheassociatedLegendrefunctions 3 x ¥ =2 p cos(t u)Q 1/2 m 2xcosh2(u/2)+1 du, r Z0 − − wherethe innerintegralwith respectto s iscalculatedv(cid:0)ia Slater’s theorem(cid:1)asa sumof residuesat simple right-handsidepolesofthegamma-functionG ( m s)andrelation(7.3.1.71)in[5],Vol. III.Lemma1is − − proved. (cid:3) Lemma 2. For eacht R the functionF t (x) given by formula (1.6)is a fundamentalsolutionof the ∈ followingthirdorderdifferentialequationwithpolynomialcoefficients 2x3(1+x)d3F t +3x(1+2x)d2F t +x 2x(1 m 2)+2t 2+1 dF t 1+t 2 F t =0, x>0. (1.12) dx3 dx2 − 2 dx − 4 (cid:18) (cid:19) (cid:18) (cid:19) Proof. Asitwasmentionedabove,theasymptoticbehavior(1.8)oftheintegrandin(1.7)permitsadifferen- tiationundertheintegralsignanynumberoftimes. Henceemployingthereductionformulaforthegamma- function[4],Vol. I,wederive d 2 1 g+i¥ s2G (s+1/2+it )G (s+1/2 it )G (1/2+s)G ( m s) xdx F t = 2p i g i¥ G (1+s)G (1−+s m ) − − x−sds (cid:18) (cid:19) Z − − = 21p i gg+i¥i¥ G (s+3/2+it )GG ((s1++3s/)G2(−1i+t )sG (1m/)2+s)G (−m −s)x−sds− 14+t 2 F t +xddF xt . (1.13) Z − − (cid:18) (cid:19) Meanwhile,withasimplechangeofvariable 1 g+i¥ G (s+3/2+it )G (s+3/2 it )G (1/2+s)G ( m s) 2p i g i¥ G (1+s)G (−1+s m ) − − x−sds Z − − 1 1+g+i¥ G (s+1/2+it )G (s+1/2 it )G (s 1/2)G (1 m s) = 2p iZ1+g−i¥ G (s)G −(s−m ) − − − x1−sds 1 1+g+i¥ s(s m )( m s)G (s+1/2+it )G (s+1/2 it )G (s+1/2)G ( m s) = 2p iZ1+g−i¥ − − − (s−1/2)G (1+s)G (1+−s−m ) − − x1−sds 1 1+g+i¥ (s2 m 2)G (s+1/2+it )G (s+1/2 it )G (s+1/2)G ( m s) =−2p iZ1+g−i¥ − G (1+s)G (1+s−−m ) − − x1−sds 1 1+g+i¥ (s2 m 2)G (s+1/2+it )G (s+1/2 it )G (s+1/2)G ( m s) −4p iZ1+g−i¥ − (s−1/2)G (1+s)G (−1+s−m ) − − x1−sds. Therefore, moving the contour of two latter integrals to the left via Cauchy’s theorem, dividing by √x, differentiatingagainandusing(1.13),weobtain d 2 x d 2F t + 1+t 2 F t xdF t +x x d 2F t xm 2F t dx"√x"(cid:18) dx(cid:19) (cid:18)4 (cid:19) − dx (cid:18) dx(cid:19) − ## 1 d 2 = x F t m 2F t . √x"(cid:18) dx(cid:19) − # Thisisequivalenttothefollowingoperatorequation 4 S.Yakubovich d 3 d 2 3 d 1 2(1+x) x F t 3 x F t + +2(t 2 xm 2) x F t +t 2 F t =0, x>0, dx − dx 2 − dx − 4 (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) whichdrivesto(1.12),fulfillingsimpledifferentiation.Lemma2isproved. (cid:3) 2. BOUNDEDNESS AND INVERSION PROPERTIES FOR THEINDEX TRANSFORM(1.4) In this section we will investigate the mapping properties of the index transform (1.4), involving the Mellin transform technique developed in [6]. Precisely, the Mellin transform is defined, for instance, in Ln ,p(R+), 1 p 2(seedetailsin[7])bytheintegral ≤ ≤ ¥ f (s)= f(x)xs 1dx, (2.1) ∗ − Z0 beingconvergentinmeanwithrespecttothenorminL (n i¥ ,n +i¥ ), n R, q=p/(p 1). Moreover, q theParsevalequalityholdsfor f Ln ,p(R+), g L1 n ,q(R−+) ∈ − ∈ ∈ − ¥ 1 n +i¥ f(x)g(x)dx= f (s)g (1 s)ds. (2.2) 0 2p i n i¥ ∗ ∗ − Z Z − TheinverseMellintransformisgivenaccordingly 1 n +i¥ f(x)= f (s)x sds, (2.3) 2p i n i¥ ∗ − Z − wheretheintegralconvergesinmeanwithrespecttothenorminLn ,p(R+) ¥ 1/p f n ,p= f(x) pxn p−1dx . (2.4) || || 0 | | (cid:18)Z (cid:19) In particular, letting n =1/p we get the usual space L (R ). Further, denoting byC (R ) the space of 1 + b + boundedcontinuousfunctions,weestablish Theorem 1. Let Rem <1/2. The index transform (1.4) is well-defined as a bounded operator Fm : L1 n ,1(R+) Cb(R), n ( 1/2, Rem )andthefollowingnorminequalitytakesplace − → ∈ − − ||Fm f||Cb(R)≡tsuRp|(Fm f)(t )|≤Cm ,n ||f||1−n ,1, (2.5) ∈ where 22n 1 1 1 n +i¥ [G (s+1/2)]2G ( m s) Cm ,n = p √−p B n +2, n +2 n i¥ (cid:12) G (1+s m−) − ds(cid:12) (2.6) (cid:18) (cid:19)Z − (cid:12) − (cid:12) afndLB1(an,b,p),i1st<hepEul2erabnedtan-fun(cti1o/n([24q]),,Vomli.n1(.0M, oRreeomv)e)r,,(cid:12)(cid:12)(cid:12)(qFm=f)p(/t()p→10),,|tth|e→n ¥ .Bes(cid:12)(cid:12)(cid:12)ides,if,inaddition, ∈ − ≤ ∈ − − − √p ¥ 1 1 1 dx (Fm f)(t )= cosh(pt ) 0 Kit √x Iit √x +I−it √x j (x) x , (2.7) Z (cid:18) (cid:19)(cid:20) (cid:18) (cid:19) (cid:18) (cid:19)(cid:21) where 1 n +1/2+i¥ G (1/2 m s)G (s)G (1 s) j (x)= 2p iZn +1/2−i¥ G (s+1/2)G−(1/−2−s)G (1/2−+s−m )f∗(3/2−s)x−sds (2.8) andintegrals(2.7), (2.8)convergeabsolutely. IndextransformswiththesquaresandproductsoftheassociatedLegendrefunctions 5 Proof. Indeed,followingideaselaboratedintheproofofLemma1andcalculatinganelementaryintegral withthehyperbolicfunction(seerelation(2.4.4.4)in[5],Vol. I),wehave ¥ 1 ¥ du (Fm f)(t ) ≤ 0 |F t (y)||f(y)|dy≤ 2p √p 0 [cosh(u/2)]2g+1 Z Z (cid:12) (cid:12) (cid:12)n +i¥ [G ((cid:12)s+1/2)]2G ( m s) ¥ n × n i¥ (cid:12) G (1+s m−) − ds(cid:12) 0 |f(y)|y− dy=Cm ,n ||f||1−n ,1. (2.9) Z − (cid:12) − (cid:12)Z This proves(2.5). Furtherm(cid:12) ore,Fubini’s theoremand(cid:12)definition of the Mellin transform(2.1) allow us to (cid:12) (cid:12) write the composition repr(cid:12)esentation for index transfo(cid:12)rm (1.4) in terms of the Fourier cosine transform, namely, (Fm f)(t )= 2p √1p i 0¥ cocoshs((tu/u2)) nn +i¥i¥ [G (s+G 1(/12+)]s2G (m−)m −s)f∗(1−s) cosh2(u/2) −sdsdu, Z Z − − (cid:0) (cid:1) where Y (u)= nn +i¥i¥ [G (s+G 1(/12+)]s2G (m−)m −s)f∗(1−s) cosh2(u/2) −s−1ds∈L1(R+; du). Z − − Henceittendstozero,when t ¥ viatheRiemann-Lebes(cid:0)guelemma.(cid:1)Ontheotherhand,returningtothe | |→ Mellin-Barnesrepresentation(1.7),appealingtotheParsevalequality(2.2)andmakingasimplesubstitution, wededucetheformula 1 n +1/2+i¥ G (s+it )G (s it )G (s)G (1/2 m s) (Fm f)(t )= 2p iZn +1/2−i¥ G (1/2+−s)G (1/2+s−−m ) − f∗(3/2−s)ds. (2.10) Meanwhile,takingtheMellin-BarnesrepresentationfortheproductofmodifiedBesselfunctionsofthe thirdkind(cf. relation(8.4.23.24)in[5],Vol. III) √p 1 1 1 xcosh(pt )Kit √x Iit √x +I−it √x (cid:18) (cid:19)(cid:20) (cid:18) (cid:19) (cid:18) (cid:19)(cid:21) 1 g+i¥ G (s 1/2) = 2p i g i¥ G−(s) G (1+it −s)G (1−it −s)x−sds, x>0, Z − where 1/2<g <1 and using again the Parseval equality (2.2), we find that (2.10) becomesthe Lebedev indextransformwith the productofthe modifiedBessel functions[8] givenbyformula(2.7),where j (x) is defined by integral(2.8). Its convergencefor each x>0 is absolute due to the estimate with the aid of Ho¨lder’sinequality Znn++1/12/−2+i¥i¥ (cid:12)G (s+G (11//22)G−(1m/−2−s)Gs)(Gs)(G1/(12−+ss)−m )f∗(3/2−s)x−sds(cid:12)≤x−n −1/2(cid:18)Znn−+i¥i¥ |f∗(1−s)|q|ds|(cid:19)1/q (cid:12) (cid:12) (cid:12)(cid:12) n +i¥ G ( m s)G (s+1/2)G (1/2 s) p (cid:12)(cid:12) 1/p p − − − ds <¥ , q= . ×(cid:18)Zn −i¥ (cid:12) G (s+1)G (−s)G (1+s−m ) (cid:12) | |(cid:19) p−1 The convergence of the latt(cid:12)er integral by s is justified, recal(cid:12)ling the Stirling formula for the asymptotic (cid:12) (cid:12) behaviorofthegamma-func(cid:12)tion,whichgives (cid:12) 6 S.Yakubovich G (−G (ms+−1s))GG ((s+s)1G /(21)+G (s1/2m−)s)=O |s|−2n −1 , |s|→¥ − − andn ischosenfromtheinterval( 1/(2q), min(0, Rem )).M(cid:0)oreover,w(cid:1)efindthatj (x)=O(x n 1/2), x> − − − − 0.Thisasymptoticbehaviorisusedtoestablishtheabsoluteconvergenceoftheintegral(2.7). Infact,em- ployingtheasymptoticformulaeforthemodifiedBesselfunctions[4],Vol. 2forfixedt R ∈ Kit √x Iit √x +I it √x =O(logx), x 0+, − → (cid:0) (cid:1)(cid:2) (cid:0) (cid:1) (cid:0) (cid:1)(cid:3) Kit √x Iit √x +I it √x =O x−1/2 , x ¥ , − → wederiveviaelementarysubs(cid:0)tituti(cid:1)o(cid:2)n (cid:0) (cid:1) (cid:0) (cid:1)(cid:3) (cid:16) (cid:17) ¥ 1 1 1 dx 1 Kit Iit +I it j (x) = O xn −1/2logx dx Z0 (cid:12)(cid:12) (cid:18)√x(cid:19)¥ (cid:20) (cid:18)√x(cid:19) − (cid:18)√x(cid:19)(cid:21) (cid:12)(cid:12) x Z0 (cid:16) (cid:17) (cid:12)(cid:12) + O xn −1 dx<¥ , n ( 1/(2q(cid:12)(cid:12)), min(0, Rem )). 1 ∈ − − Z Theorem1isproved. (cid:0) (cid:1) (cid:3) Writing(2.7)intheform 2√p ¥ dx (Fm f)(t )= cosh(pt ) 0 Kit (x)[Iit (x)+I−it (x)]j (1/x2) x , (2.11) Z wewillappealtotheLebedevexpansiontheoremin[8],whichimpliesthefollowingrepresentationofthe antiderivative ¥ 1 dy 1 ¥ x j y2 y = p 2√p 0 t sinh(2pt )Ki2t (x)(Fm f)(t )dt , x>0, (2.12) Z (cid:18) (cid:19) Z which holds under condition j (1/x2)x 1 L (0,1); x 1/2dx L (1,¥ ); x1/2dx . By straightforward − 1 − 1 substitutionswe see thatthisconditionis∈equivalentto (cf. (2.4)∩)j L (1,¥ ) L (0,1). On the (cid:0) (cid:1) ∈(cid:0) 1/4,1 ∩(cid:1) −1/4,1 otherhand,lettingin(2.12)1/√xinsteadofxandchangingthevariableinitsleft-handside,weobtain x dy 2 ¥ 1 0 j (y) y = p 2√p 0 t sinh(2pt )Ki2t √x (Fm f)(t )dt . Z Z (cid:18) (cid:19) Then,appealingtorelation(8.4.23.28)in[5],Vol. IIIanddifferentiatingtwosidesofthelatterequalitywith respecttox,wefind x d ¥ g+i¥ G ( s)G (it s)G ( it s) j (x)= 2p 3idx 0 t sinh(2pt )(Fm f)(t ) g i¥ − G (1−/2 s)− − x−sdsdt , g <0. (2.13) Z Z − − Ourgoalnowistomotivatethedifferentiationunderintegralsignintheright-handsideof(2.13).Todothis weuse(1.11)togettheuniformestimateoftheproductofgamma-functions ¥ y G (it s)G ( it s) 2Res+1 G ( 2s) cosh2Res dy, Res<0. | − − − |≤ | − | 0 2 Z Consequently,assuming the integrabilityconditionFm L1(R; t e2p |t|(cid:16)dt )(cid:17), the repeatedintegralin (2.13) ∈ | | canbeestimatedasfollows IndextransformswiththesquaresandproductsoftheassociatedLegendrefunctions 7 ¥ g+i¥ G ( s)G (it s)G ( it s) 0 t sinh(2pt ) (Fm f)(t ) g i¥ − G (1−/2 s)− − x−sds dt Z Z − (cid:12) − (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) ≤Cx−g||F(cid:12)m ||L1(R+;|t(cid:12)|e2pt dt)Z(cid:12)(cid:12)g−g+i¥i¥ (cid:12)G (G −(12/s2)G+(−s)s)ds(cid:12)<¥ , (cid:12)(cid:12) whereC>0 is an absolute constant. A similar estimate h(cid:12)olds for the repe(cid:12)ated integral for the derivative (cid:12) (cid:12) withrespecttox,andthedifferentiationundertheintegral(cid:12)signoftheinneri(cid:12)ntegralbysispossibleviathe Stirlingasymptoticformulaforthegamma-function. Thusthedifferentiationin(2.13)ispermittedaswell asthechangeoftheorderofintegration,owingtotheabsoluteanduniformconvergencebyx x >0,and 0 ≥ withtheuseofthereductionformulaforthegamma-functionweobtain 1 g+i¥ G (1 s) ¥ j (x)= 2p 3i g i¥ G (1/2− s)x−s 0 t sinh(2pt )(Fm f)(t )G (it −s)G (−it −s)dt ds. (2.14) Z − − Z Returningtointegralrepresentation(2.8)forj (x), wefindthatifthefunction f (3/2 s)/sisanalyticin ∗ theopenstripg <Res<n +1/2and(1+ s)1 2Resf (3/2 s)/sisabsolutelyintegrab−leoveranyvertical − ∗ | | − lineoftheclosureofthisstrip,thenviaCauchy’stheoremwecanmovethecontourtotheleft,integrating in(2.8)over(g i¥ ,g +i¥ ), g <0. ThereforeunderconditionsofTheorem1andviatheaboveestimates − weobservethatbothsidesof(2.14)areinverseMellintransformsofabsolutelyintegrablefunctions.Hence theuniquenesstheoremcanbeappliedfortheMellintransforminL [7],andwederive 1 1 G (s+1/2)G (1/2+s m ) f∗(3/2−s)= p 2 G (1/2 m s)G (s−) − − ¥ 1 1 t sinh(2pt )(Fm f)(t )G (it s)G ( it s)dt , max , Rem <g <0. (2.15) × 0 − − − −2 −2 Z (cid:18) (cid:19) Afterthesimplechangeofvariablethelatterequalitybecomes 1 G (2 s)G (2 s m ) ¥ f∗(s)= p 2G (s −1 m )G −(3/−2 s) 0 t sinh(2pt )(Fm f)(t )G (s−3/2+it )G (s−3/2−it )dt , − − − Z whereRes=g0=3/2 g .Hence,undercondition f L1/2 g,1(R+)wetaketheinverseMellintransform ofbothsidesofthelatte−requalityandchangetheorde∈rofint−egrationintheright-handsideoftheobtained equality. Thuswededuce,finally,theinversionformulafortheindextransform(1.4),whichcanbewritten (withtheuseofthereductionformulaforthegamma-functionanddifferentiationundertheintegralsign) intheform x 1/2 d ¥ f(x)= −p 2 dx x3/2 t sinh(2pt )Sm (x,t )(Fm f)(t )dt , x>0, (2.16) 0 Z where Sm (x,t )= 21p iZg0g−0+i¥i¥ G G(s(2−−1s−)Gm()2G −(5s/−2−m )s)G (s−3/2+it )G (s−3/2−it )x−sds, x>0. (2.17) Thiskernelcanbecalculatedintermsofthederivativeoftheproductofthefirstandsecondkindassociated Legendrefunctions. Wewilldoitwiththeaidofrelation(8.4.42.34)in[5],Vol. III.Infact,employingthe reflectionformulaforthegamma-function[4],Vol. 1,weobtain 8 S.Yakubovich 2√p e−imp G (1/2−m +it )Pm 1+x Qm 1+x +Qm 1+x x2 G (1/2+m +it ) 1/2+it x 1/2+it x 1/2 it x − r !" − r ! − − r !# = 21p iZg0g−0+i¥i¥ G (2−s)G G(2(s−−mm−−s)1G)(s−3/2)(cid:20)GG ((5s/−23+/2it+−its))+GG ((5s/−23−/2it−−its))(cid:21)x−sds = coshp(ipt )Zg0g−0+i¥i¥ G (2−s)G (2−Gm(s−−s)mG −(s1−)G3/(52/+2−it )sG)(s−3/2−it )x−sds, x>0. Henceowingtotheidentity[4],Vol. 1 e−imp GG ((11//22−+mm ++iitt ))Qm 1/2+it 1+x x =eimp Q−1m/2+it 1+x x , − r ! − r ! weendupwiththefollowingvalueofthekernel(2.17) Sm (x,t )= x2√cposehi(mppt )Pm 1/2+it 1+x x − r ! m 1+x m 1+x ×"Q−−1/2+it r x !+Q−−1/2−it r x !#, x>0. Wesummarizetheresultsofthissectionasthefollowingintegraltheorem. Theorem2. LetconditionsofTheorem1holdandj L 1/4,1(0,1) L1/4,1(1,¥ ), Fm L1(R; t e2p t dt ).Letbesides,theMellintransform f (3/2 s∈)be−suchthat f∩(3/2 s)/sbean∈alyticin|th|eopen | | ∗ v×erticalstripg <Res<n +1/2forsomeg <0, f (3/−2 s)/s L ((Res∗ i¥ ,R−es+i¥ );(1+ s)1 2Res ds) 1 − overanyverticallineoftheclosureofthisstripa∗nd f −L1/2 ∈g,1(R+). T−henforx>0thean|ti|derivativ|eo|f thefunctionx1/2f(x)canbeexpandedintermofthere∈peated−integral ¥ y1/2f(y)dy= 2eimp ¥ t sinh(pt )G 1+it m G 1 it m Pm 1+x Zx − p √x Z0 (cid:18)2 − (cid:19) (cid:18)2− − (cid:19) −1/2+it r x ! 2 ×"Q−−1m/2+it r1+x x!+Q−−1m/2−it r1+x x!#Z0¥ "P−m 1/2+it s1+y y!# f(y)dydt , (2.18) generatingthepair(1.4),(2.16)ofthedirectandinverseindextransforms,respectively. Remark1. TheclassicalLebedevexpansion(1.1)foradjointkernelscanbeobtained,lettingm =0in (2.18).Then,substituting (1+x)/x, (1+y)/ybynewvariables,wederive x p p¥ h(y)dy=2(x2 1)1/2 t tanh(pt )P 1/2+it(x) Q 1/2+it(x)+Q 1/2 it(x) 1 − 0 − − − − Z Z ¥ (cid:2) (cid:3) (y2 1)1/2 P 1/2+it(y) 2h(y)dydt , × 1 − − Z whereh(y)=2yf (y2 1) 1 (y2 1) 5/2. (cid:2) (cid:3) − − − − Remark2. BythesametechniqueonecanestablishthegeneralizedLebedevexpansion(1.1)intheform (cid:0) (cid:1) IndextransformswiththesquaresandproductsoftheassociatedLegendrefunctions 9 ¥ y1/2f(y)dy= 2eimp ¥ t sinh(pt )G 1+it m G 1 it m Pm 1+x 2 Zx − p √x Z0 (cid:18)2 − (cid:19) (cid:18)2− − (cid:19)" −1/2+it r x !# ×Z0¥ P−m 1/2+it s1+y y!"Q−−1m/2+it s1+y y!+Q−−1m/2−it s1+y y!#f(y)dydt , x>0, leadingtothereciprocalformulas(1.2),(1.3)whenm =0. Weleavedetailstothereader. 3. INDEX TRANSFORM(1.5) Theboundednessofthe adjointoperator(1.5)andinversionformulaforthistransformationwill bees- tablishedbelow.Webeginwith Theorem 3. Let Rem <1/2. The index transform (1.5) is well-defined as a bounded operator Gm : L1(R) Ln ,¥ (R+), n ( 1/2, Rem )andthefollowingnorminequalitytakesplace → ∈ − − n ||Gm g||n ,¥ ≡esssupx>0|x (Gm g)(x)|≤Cm ,n ||g||L1(R), (3.1) whereCm ,n isdefinedby(2.6). Moreover,if(Gm g)(x) Ln ,1(R+),thenforally>0 ∈ 1 n +i¥ G (1+s)G (1+s m )G ( s) ¥ y g(t ) 2p i n i¥ G (1/2+s)G (−m s)− (G∗m g)(s)y−sds =√p y ¥ ey/2 Kit 2 cosh(pt )dt . (3.2) Z − − − Z− (cid:16) (cid:17) Proof. The norm inequality (3.1) is a direct consequence of the estimates (2.9). Indeed, since the kernel (1.6)hasabound F t (x) Cm ,n x−n , x>0, | |≤ whereCm ,n isdefinedby(2.6),wehave |(Gm g)(x)|≤Cm ,n x−n R|g(t )|dt =Cm ,n x−n ||g||L1(R), Z and (3.1) follows. Now, taking the Mellin transform (2.1) of both sides of (1.5), we change the order of integrationbyFubini’stheoremandtakeintoaccount(1.7)toobtaintheequality G (1+s)G (1+s m ) ¥ 1 1 G (1/2+s)G ( m− s)(G∗m g)(s)= ¥ G s+2+it G s+2−it g(t )dt , (3.3) − − Z− (cid:18) (cid:19) (cid:18) (cid:19) where 1/2<Res< Rem . Hence theinverseMellin transform(2.3)andrelation(8.4.23.5)in [5], Vol. IIIwill−leadusto(3.2)−,completingtheproofofTheorem3. (cid:3) Theinversionformulafortheindextransform(1.5)isgivenby Theorem4.LetRem <1/2,g(z/i)beanevenanalyticfunctioninthestripD= z C: Rez <a <1/2 , { ∈ | | } suchthatg(0)=g′(0)=0 and g(z/i) be absolutely integrableover any vertical line in D. If (Gm g)(y) L1 g,1(R+), 3/2<g <min(2, 2 Rem ), then for all x R the inversion formula holds for the inde∈x tra−nsform(1.5) − ∈ g(x)= eimp xsinh(p x) ¥ y 1/2 d y 1/2 Pm 1+y p √p Z0 (cid:18) − dy − (cid:19)" −1/2+ix s y ! 10 S.Yakubovich m 1+y m 1+y Q− +Q− (Gm g)(y)dy. (3.4) ×" −1/2+ix s y ! −1/2−ix s y !## Proof. Indeed,recalling(3.2),wemultiplyitsbothsidesbye y/2K (y/2)ye 3/2forsomepositivee (0,1) − ix − andintegratewithrespecttoyover(0,¥ ). Hencechangingtheorderofintegrationintheleft-hand∈sideof theobtainedequalityduetotheabsoluteconvergenceoftheiteratedintegral,weappealtorelation(8.4.23.3) in[5],Vol. IIItofind 1 n +i¥ G (1+s)G (1+s m )G (e s 1/2+ix)G (e s 1/2 ix)G ( s) 2p i n i¥ −G (1/2+−s)−G (e s)G ( m −s)− − − (Gm g)∗(s)ds Z − − − − = 0¥ Kix 2y ye−1 ¥¥ Kit 2y cosgh((tpt) )dt dy. (3.5) Z (cid:16) (cid:17) Z− (cid:16) (cid:17) Inthemeantime,theright-handsideof(3.5)canbetreated,usingtheevennessofgandtherepresentation ofthemodifiedBesselfunctionK (y)intermsofthemodifiedBesselfunctionofthefirstkindI (y)[4],Vol. z z II.Hencewithasimplesubstitutionwefind 0¥ Kix 2y ye−1 ¥¥ Kit 2y cosgh((tpt) )dt dy Z (cid:16) (cid:17) Z− (cid:16) (cid:17) =2p i ¥ K y ye 1 i¥ I y g(z/i) dzdy. (3.6) 0 ix 2 − i¥ z 2 sin(2p z) Z (cid:16) (cid:17) Z− (cid:16) (cid:17) Ontheotherhand,accordingtoourassumptiong(z/i)isanalyticintheverticalstrip0 Rez<a <1/2, ≤ g(0)=g(0)=0andintegrableintheclosureofthestrip.Hence,appealingtotheinequalityforthemodified ′ Besselfunctionofthefirstkind(see[6],p. 93) Iz(y) IRez(y)ep |Imz|/2, 0<Rez<a , | |≤ onecanmovethecontourtotherightinthelatterintegralin(3.6).Then 2p i ¥ K y ye 1 i¥ I y g(z/i) dzdy 0 ix 2 − i¥ z 2 sin(2p z) Z (cid:16) (cid:17) Z− (cid:16) (cid:17) =2p i ¥ K y ye 1 a +i¥ I y g(z/i) dzdy. 0 ix 2 − a i¥ z 2 sin(2p z) NowRez>0, andit ispossibletZo passt(cid:16)ot(cid:17)he limiZtu−ndert(cid:16)he i(cid:17)ntegralsignwhene 0 andtochangethe → orderofintegrationdueto the absoluteanduniformconvergence. Thereforethe valueof the integral(see relation(2.16.28.3)in[5],Vol. II) ¥ dy 1 K (y)I (y) = 0 ix z y x2+z2 Z leadsustotheequalities lim2p i ¥ K y ye 1 i¥ I y g(z/i) dzdy e 0 0 ix 2 − i¥ z 2 sin(2p z) → Z (cid:16) (cid:17) Z− (cid:16) (cid:17) a +i¥ g(z/i) a i¥ a +i¥ g(z/i)dz =2p i dz=p i − − + . (3.7) Za −i¥ (x2+z2)sin(2p z) (cid:18)Z−a +i¥ Za −i¥ (cid:19)(z−ix)zsin(2p z)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.