ebook img

Learn C++ Programming Language: Become A Complete C++ Programmer PDF

1859 Pages·2016·5.42 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Learn C++ Programming Language: Become A Complete C++ Programmer

Learn C++ Programming Language Become A Complete C++ Programmer By Virender Singh Disclaimer & Copyright : Anyone Is Free To Distribute This Book Digitally And For Commercial Purpose. Contents Contents iii Preface v Preface to the Fourth Edition ...................................................... v Preface to the Third Edition ........................................................ ix Preface to the Second Edition ..................................................... xi Preface to the First Edition ......................................................... xii Part I: Introductory Material 1. Notes to the Reader ..................................................................... 3 2. A Tour of C++: The Basics ......................................................... 37 3. A Tour of C++: Abstraction Mechanisms ................................... 59 4. A Tour of C++: Containers and Algorithms ............................... 87 5. A Tour of C++: Concurrency and Utilities ................................. 111 Part II: Basic Facilities 133 6. Types and Declarations ............................................................... 135 7. Pointers, Arrays, and References ................................................ 171 8. Structures, Unions, and Enumerations ........................................ 201 9. Statements ................................................................................... 225 10. Expressions ................................................................................. 241 iv Contents 11. Select Operations ........................................................................ 273 12. Functions ..................................................................................... 305 13. Exception Handling .................................................................... 343 14. Namespaces ................................................................................. 389 15. Source Files and Programs .......................................................... 419 Part III: Abstraction Mechanisms 447 16. Classes ........................................................................................ 449 17. Construction, Cleanup, Copy, and Move .................................... 481 18. Overloading ................................................................................. 527 19. Special Operators ........................................................................ 549 20. Derived Classes ........................................................................... 577 21. Class Hierarchies ........................................................................ 613 22. RunTime Type Information ....................................................... 641 23. Templates .................................................................................... 665 24. Generic Programming ................................................................. 699 25. Specialization .............................................................................. 721 26. Instantiation ................................................................................ 741 27. Templates and Hierarchies .......................................................... 759 28. Metaprogramming ....................................................................... 779 29. A Matrix Design ......................................................................... 827 Part IV: The Standard Library 857 30. Standard Library Summary ......................................................... 859 31. STL Containers ........................................................................... 885 32. STL Algorithms .......................................................................... 927 33. STL Iterators ............................................................................... 953 34. Memory and Resources ............................................................... 973 35. Utilities ........................................................................................ 1009 36. Strings ......................................................................................... 1033 37. Regular Expressions .................................................................... 1051 38. I/O Streams ................................................................................. 1073 39. Locales ........................................................................................ 1109 40. Numerics ..................................................................................... 1159 41. Concurrency ................................................................................ 1191 42. Threads and Tasks ....................................................................... 1209 43. The C Standard Library .............................................................. 1253 44. Compatibility .............................................................................. 1267 Index 1281 Preface All problems in computer science can be solved by another level of indirection, except for the problem of too many layers of indirection. – David J. Wheeler C++ feels like a new language. That is, I can express my ideas more clearly, more simply, and more directly in C++11 than I could in C++98. Furthermore, the resulting programs are better checked by the compiler and run faster. In this book, I aim for completeness. I describe every language feature and standardlibrary component that a professional programmer is likely to need. For each, I provide: • Rationale: What kinds of problems is it designed to help solve? What principles underlie the design? What are the fundamental limitations? • Specification: What is its definition? The level of detail is chosen for the expert programmer; the aspiring language lawyer can follow the many references to the ISO standard. • Examples: How can it be used well by itself and in combination with other features? What are the key techniques and idioms? What are the implications for maintainability and performance? The use of C++ has changed dramatically over the years and so has the language itself. From the point of view of a programmer, most of the changes have been improvements. The current ISO standard C++ (ISO/IEC 14882-2011, usually called C++11) is simply a far better tool for writing quality software than were previous versions. How is it a better tool? What kinds of programming styles and techniques does modern C++ support? What language and standardlibrary features support those techniques? What are the basic building blocks of elegant, correct, maintainable, and efficient C++ code? Those are the key questions answered by this book. Many answers are not the same as you would find with 1985, 1995, or 2005 vintage C++: progress happens. C++ is a general-purpose programming language emphasizing the design and use of type-rich, lightweight abstractions. It is particularly suited for resource- constrained applications, such as those found in software infrastructures. C++ rewards the programmer who takes the time to master vi Preface techniques for writing quality code. C++ is a language for someone who takes the task of programming seriously. Our civilization depends critically on software; it had better be quality software. There are billions of lines of C++ deployed. This puts a premium on stability, so 1985 and 1995 C++ code still works and will continue to work for decades. However, for all applications, you can do better with modern C++; if you stick to older styles, you will be writing lower-quality and worse-performing code. The emphasis on stability also implies that standards-conforming code you write today will still work a couple of decades from now. All code in this book conforms to the 2011 ISO C++ standard. This book is aimed at three audiences: • C++ programmers who want to know what the latest ISO C++ standard has to offer, • C programmers who wonder what C++ provides beyond C, and • People with a background in application languages, such as Java, C#, Python, and Ruby, looking for something ‘‘closer to the machine’’ – something more flexible, something offering better compiletime checking, or something offering better performance. Naturally, these three groups are not disjoint – a professional software developer masters more than just one programming language. This book assumes that its readers are programmers. If you ask, ‘‘What’s a for- loop?’’ or ‘‘What’s a compiler?’’ then this book is not (yet) for you; instead, I recommend my Programming: Principles and Practice Using C++ to get started with programming and C++. Furthermore, I assume that readers have some maturity as software developers. If you ask ‘‘Why bother testing?’’ or say, ‘‘All languages are basically the same; just show me the syntax’’ or are confident that there is a single language that is ideal for every task, this is not the book for you. What features does C++11 offer over and above C++98? A machine model suitable for modern computers with lots of concurrency. Language and standardlibrary facilities for doing systemslevel concurrent programming (e.g., using multicores). Regular expression handling, resource management pointers, random numbers, improved containers (including, hash tables), and more. General and uniform initialization, a simpler for-statement, move semantics, basic Unicode support, lambdas, general constant expressions, control over class defaults, variadic templates, userdefined literals, and more. Please remember that those libraries and language features exist to support programming techniques for developing quality software. They are meant to be used in combination – as bricks in a building set – rather than to be used individually in relative isolation to solve a specific problem. A computer is a universal machine, and C++ serves it in that capacity. In particular, C++’s design aims to be sufficiently flexible and general to cope with future problems undreamed of by its designers. vii Acknowledgments In addition to the people mentioned in the acknowledgment sections of the previous editions, I would like to thank Pete Becker, Hans-J. Boehm, Marshall Clow, Jonathan Coe, Lawrence Crowl, Walter Daugherty, J. Daniel Garcia, Robert Harle, Greg Hickman, Howard Hinnant, Brian Kernighan, Daniel Krügler, Nevin Liber, Michel Michaud, Gary Powell, Jan Christiaan van Winkel, and Leor Zolman. Without their help this book would have been much poorer. Thanks to Howard Hinnant for answering many questions about the standard library. Andrew Sutton is the author of the Origin library, which was the testbed for much of the discussion of emulating concepts in the template chapters, and of the matrix library that is the topic of Chapter 29. The Origin library is open source and can be found by searching the Web for ‘‘Origin’’ and ‘‘Andrew Sutton.’’ Thanks to my graduate design class for finding more problems with the ‘‘tour chapters’’ than anyone else. Had I been able to follow every piece of advice of my reviewers, the book would undoubtedly have been much improved, but it would also have been hundreds of pages longer. Every expert reviewer suggested adding technical details, advanced examples, and many useful development conventions; every novice reviewer (or educator) suggested adding examples; and most reviewers observed reviewer (or educator) suggested adding examples; and most reviewers observed (correctly) that the book may be too long. Thanks to Princeton University’s Computer Science Department, and especially Prof. Brian Kernighan, for hosting me for part of the sabbatical that gave me time to write this book. Thanks to Cambridge University’s Computer Lab, and especially Prof. Andy Hopper, for hosting me for part of the sabbatical that gave me time to write this book. Thanks to my editor, Peter Gordon, and his production team at AddisonWesley for their help and patience. Virender Singh Vi This page intentionally left blank Preface to the Third Edition Programming is understanding. – Kristen Nygaard I find using C++ more enjoyable than ever. C++’s support for design and programming has improved dramatically over the years, and lots of new helpful techniques have been developed for its use. However, C++ is not just fun. Ordinary practical programmers have achieved significant improvements in productivity, maintainability, flexibility, and quality in projects of just about any kind and scale. By now, C++ has fulfilled most of the hopes I originally had for it, and also succeeded at tasks I hadn’t even dreamt of. This book introduces standard C++† and the key programming and design techniques supported by C++. Standard C++ is a far more powerful and polished language than the version of C++ introduced by the first edition of this book. New language features such as namespaces, exceptions, templates, and runtime type identification allow many techniques to be applied more directly than was possible before, and the standard library allows the programmer to start from a much higher level than the bare language. About a third of the information in the second edition of this book came from the first. This third edition is the result of a rewrite of even larger magnitude. It offers something to even the most experienced C++ programmer; at the same time, this book is easier for the novice to approach than its predecessors were. The explosion of C++ use and the massive amount of experience accumulated as The explosion of C++ use and the massive amount of experience accumulated as a result makes this possible. The definition of an extensive standard library makes a difference to the way C++ concepts can be presented. As before, this book presents C++ independently of any particular implementation, and as before, the tutorial chapters present language constructs and concepts in a ‘‘bottom up’’ order so that a construct is used only after it has been defined. However, it is much easier to use a well-designed library than it is to understand the details of its implementation. Therefore, the standard library can be used to provide realistic and interesting examples well before a reader can be assumed to understand its inner workings. The standard library itself is also a fertile source of programming examples and design techniques. This book presents every major C++ language feature and the standard library. It is organized around language and library facilities. However, features are presented in the context of their use. x Preface to the Third Edition That is, the focus is on the language as the tool for design and programming rather than on the language in itself. This book demonstrates key techniques that make C++ effective and teaches the fundamental concepts necessary for mastery. Except where illustrating technicalities, examples are taken from the domain of systems software. A companion, The Annotated C++ Language Standard, presents the complete language definition together with annotations to make it more comprehensible. The primary aim of this book is to help the reader understand how the facilities offered by C++ support key programming techniques. The aim is to take the reader far beyond the point where he or she gets code running primarily by copying examples and emulating programming styles from other languages. Only a good understanding of the ideas behind the language facilities leads to mastery. Supplemented by implementation documentation, the information provided is sufficient for completing significant realworld projects. The hope is that this book will help the reader gain new insights and become a better programmer and designer. Acknowledgments In addition to the people mentioned in the acknowledgement sections of the first and second editions, I would like to thank Matt Austern, Hans Boehm, Don Caldwell, Lawrence Crowl, Alan Feuer, Andrew Forrest, David Gay, Tim Griffin, Peter Juhl, Brian Kernighan, Andrew Koenig, Mike Mowbray, Rob Murray, Lee Nackman, Joseph Newcomer, Alex Stepanov, David Vandevoorde, Peter Weinberger, and Chris Van Wyk for commenting on draft chapters of this third edition. Without their help and suggestions, this book would have been harder to understand, contained more errors, been slightly less complete, and probably been a little bit shorter. I would also like to thank the volunteers on the C++ standards committees who did an immense amount of constructive work to make C++ what it is today. It is slightly unfair to single out individuals, but it would be even more unfair not to mention anyone, so I’d like to especially mention Mike Ball, Dag Bruck, Sean Corfield, Ted Goldstein, Kim Knuttila, Andrew Koenig, Dmitry Lenkov, Nathan Myers, Martin O’Riordan, Tom Plum, Jonathan Shopiro, John Spicer, Jerry Schwarz, Alex Stepanov, and Mike Vilot, as people who each directly cooperated with me over some part of C++ and its standard library. After the initial printing of this book, many dozens of people have mailed me corrections and suggestions for improvements. I have been able to accommodate many of their suggestions within the framework of the book so that later printings benefitted significantly. Translators of this book into many languages have also provided many clarifications. In response to requests from readers, I have added appendices D and E. Let me take this opportunity to thank a few of those who helped: Dave Abrahams, Matt Austern, Jan Bielawski, Janina Mincer Daszkiewicz, Andrew Koenig, Dietmar Kuhl, Nicolai Josuttis, Nathan Myers, Paul E. Sevin c, Andy Tenne-Sens, Shoichi Uchida, Ping-Fai (Mike) Yang, and Dennis Yelle. Preface to the Second Edition The road goes ever on and on. – Bilbo Baggins As promised in the first edition of this book, C++ has been evolving to meet the needs of its users. This evolution has been guided by the experience of users of widely varying backgrounds working in a great range of application areas. The C++ user-community has grown a hundredfold during the six years since the first edition of this book; many lessons have been learned, and many techniques have been discovered and/or validated by experience. Some of these experiences are reflected here. are reflected here. The primary aim of the language extensions made in the last six years has been to enhance C++ as a language for data abstraction and object-oriented programming in general and to enhance it as a tool for writing high-quality libraries of userdefined types in particular. A ‘‘high-quality library,’’ is a library that provides a concept to a user in the form of one or more classes that are convenient, safe, and efficient to use. In this context, safe means that a class provides a specific type-safe interface between the users of the library and its providers; efficient means that use of the class does not impose significant overheads in runtime or space on the user compared with handwritten C code. This book presents the complete C++ language. Chapters 1 through 10 give a tutorial introduction; Chapters 11 through 13 provide a discussion of design and software development issues; and, finally, the complete C++ reference manual is included. Naturally, the features added and resolutions made since the original edition are integral parts of the presentation. They include refined overloading resolution, memory management facilities, and access control mechanisms, type- safe linkage, const and static member functions, abstract classes, multiple inheritance, templates, and exception handling. C++ is a general-purpose programming language; its core application domain is systems programming in the broadest sense. In addition, C++ is successfully used in many application areas that are not covered by this label. Implementations of C++ exist from some of the most modest microcomputers to the largest supercomputers and for almost all operating systems. Consequently, this book describes the C++ language itself without trying to explain a particular implementation, programming environment, or library. This book presents many examples of classes that, though useful, should be classified as ‘‘toys.’’ This style of exposition allows general principles and useful techniques to stand out more clearly than they would in a fully elaborated program, where they would be buried in details. Most xii Preface to the Second Edition of the useful classes presented here, such as linked lists, arrays, character strings, matrices, graphics classes, associative arrays, etc., are available in ‘‘bulletproof ’’ and/or ‘‘goldplated’’ versions from a wide variety of commercial and non- commercial sources. Many of these ‘‘industrial strength’’ classes and libraries are actually direct and indirect descendants of the toy versions found here.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.