ebook img

Lattice Point Identities and Shannon-Type Sampling PDF

325 Pages·2019·3.396 MB·\325
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lattice Point Identities and Shannon-Type Sampling

Lattice Point Identities and Shannon-Type Sampling Lattice Point Identities and Shannon-Type Sampling Willi Freeden M. Zuhair Nashed CRCPress Taylor&FrancisGroup 6000BrokenSoundParkwayNW,Suite300 BocaRaton,FL33487-2742 (cid:13)c 2020byTaylor&FrancisGroup,LLC CRCPressisanimprintofTaylor&FrancisGroup,anInformabusiness NoclaimtooriginalU.S.Governmentworks Printedonacid-freepaper InternationalStandardBookNumber-13:978-0-367-37563-8(Hardback) Thisbookcontainsinformationobtainedfromauthenticandhighlyregardedsources.Rea- sonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the conse- quences of their use. The authors and publishers have attempted to trace the copyright holdersofallmaterialreproducedinthispublicationandapologizetocopyrightholdersif permissiontopublishinthisformhasnotbeenobtained.Ifanycopyrightmaterialhasnot beenacknowledgedpleasewriteandletusknowsowemayrectifyinanyfuturereprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means,nowknownorhereafterinvented,includingphotocopying,microfilming,andrecord- ing,orinanyinformationstorageorretrievalsystem,withoutwrittenpermissionfromthe publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com(http://www.copyright.com/)orcontacttheCopyrightClearanceCen- ter, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not- for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system ofpaymenthasbeenarranged. Trademark Notice:Productorcorporatenamesmaybetrademarksorregisteredtrade- marks,andareusedonlyforidentificationandexplanationwithoutintenttoinfringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents Preface xi Authors xv Acknowledgments xvii I Central Theme 1 1 From Lattice Point to Shannon-Type Sampling Identities 3 1.1 Classical Framework of Shannon Sampling . . . . . . . . . . 3 1.2 Transition From Shannon to Shannon-Type Sampling . . . . 7 1.3 Novel Framework of Shannon-Type Sampling . . . . . . . . . 8 2 Obligations, Ingredients, Achievements, and Innovations 11 2.1 Obligations and Ingredients . . . . . . . . . . . . . . . . . . . 11 2.2 Achievements and Innovative Results . . . . . . . . . . . . . 13 2.3 Methods and Tools . . . . . . . . . . . . . . . . . . . . . . . 14 3 Layout 17 3.1 Structural Organisation . . . . . . . . . . . . . . . . . . . . . 17 3.2 Relationship to Other Monographs . . . . . . . . . . . . . . . 21 II Univariate Poisson-Type Summation Formulas and Shannon-Type Sampling 23 4 Euler/Poisson-Type Summation Formulas and Shannon-Type Sampling 25 4.1 Classical Euler Summation Formula . . . . . . . . . . . . . . 25 4.2 Variants of the Euler Summation Formula . . . . . . . . . . 30 4.3 Poisson-Type Summation Formula over Finite Intervals . . . 33 4.4 Shannon Sampling Based on the Poisson Summation-Type Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 v vi Contents 4.5 Shannon-Type Sampling Based on Poisson Summation-Type Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.6 Fourier Transformed Values–Based Shannon-Type Sampling (Finite Intervals) . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.7 Functional Values–Based Shannon-Type Sampling (Finite Intervals) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.8 Paley–Wiener Reproducing Kernel Hilbert Spaces . . . . . . 47 4.9 Poisson-Type Summation Formula over the Euclidean Space 48 4.10 Functional Values–Based Shannon-Type Sampling (Euclidean Space) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.11 Fourier Transformed Values–Based Shannon-Type Sampling (Euclidean Space) . . . . . . . . . . . . . . . . . . . . . . . . 56 III Preparatory Material for Multivariate Lattice Point Summation and Shannon-Type Sampling 59 5 Preparatory Tools of Vector Analysis 61 5.1 Cartesian Notation and Settings . . . . . . . . . . . . . . . . 61 5.2 Spherical Notation and Settings . . . . . . . . . . . . . . . . 63 5.3 Regular Regions and Integral Theorems . . . . . . . . . . . . 65 6 Preparatory Tools of the Theory of Special Functions 71 6.1 Homogeneous Harmonic Polynomials . . . . . . . . . . . . . 71 6.2 Bessel Functions . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.3 Asymptotic Expansions . . . . . . . . . . . . . . . . . . . . . 90 7 Preparatory Tools of Lattice Point Theory 93 7.1 Lattices in Euclidean Spaces . . . . . . . . . . . . . . . . . . 93 7.2 Figure Lattices in Euclidean Spaces . . . . . . . . . . . . . . 96 7.3 Basic Results of the Geometry of Numbers . . . . . . . . . . 98 7.4 Lattice Points Inside Spheres . . . . . . . . . . . . . . . . . . 100 8 Preparatory Tools of Fourier Analysis 109 8.1 Stationary Point Asymptotics . . . . . . . . . . . . . . . . . 110 8.2 Periodic Polynomials and Fourier Expansions . . . . . . . . . 113 8.3 Fourier Transform over Euclidean Spaces . . . . . . . . . . . 115 8.4 Periodization and Classical Poisson Summation Formula . . 117 8.5 Gauss–Weierstrass Transform over Euclidean Spaces . . . . . 119 8.6 Hankel Transform and Discontinuous Integrals . . . . . . . . 122 Contents vii IV Multivariate Euler-Type Summation Formulas over Regular Regions 127 9 Euler–Green Function and Euler-Type Summation Formula 129 9.1 Euler–Green Function . . . . . . . . . . . . . . . . . . . . . . 129 9.2 Euler-Type Summation Formulas over Regular Regions Based on Euler–Green Functions . . . . . . . . . . . . . . . . 131 9.3 Iterated Euler–Green Function . . . . . . . . . . . . . . . . . 134 9.4 Euler-Type Summation Formulas over Regular Regions Based on Iterated Euler–Green Functions . . . . . . . . . . . 136 V Bivariate Lattice Point/Ball Summation and Shannon-Type Sampling 141 10 Hardy–Landau-Type Lattice Point Identities (Constant Weight) 143 10.1 Integral Mean Asymptotics for the Euler–Green Function . . 143 10.2 Hardy–Landau-Type Identity . . . . . . . . . . . . . . . . . . 146 10.3 Discrepancy Asymptotics . . . . . . . . . . . . . . . . . . . . 151 11 Hardy–Landau-Type Lattice Point Identities (General Weights) 153 11.1 Pointwise Fourier Inversion Formula for Regular Regions . . 156 11.2 General Geometry and Homogeneous Boundary Weight . . . 158 11.3 Circles and General Weights . . . . . . . . . . . . . . . . . . 163 11.4 Smooth Convex Regions and General Weights . . . . . . . . 168 12 Bandlimited Shannon-Type Sampling (Preparatory Results) 171 12.1 From Hardy–Landau-Type Identities to Shannon-Type Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 12.2 Over- and Undersampling . . . . . . . . . . . . . . . . . . . . 172 13 Lattice Ball Euler Summation Formulas and Shannon-Type Sampling 175 13.1 Lattice Ball Euler–Green Function . . . . . . . . . . . . . . . 175 13.2 Lattice Ball Euler Summation Formula . . . . . . . . . . . . 177 13.3 Lattice Ball Mean Shannon-Type Sampling . . . . . . . . . . 179 viii Contents VI Multivariate Poisson-Type Summation Formulas over Regular Regions 185 14 Gauss–Weierstrass Mean Euler-Type Summation Formulas and Shannon-Type Sampling 187 14.1 Gauss–Weierstrass Transform over Regular Regions . . . . . 187 14.2 Gauss–Weierstrass Mean Euler–Green Function . . . . . . . 189 14.3 Gauss–Weierstrass Mean Euler Summation over Regular Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 14.4 Bandlimited Gauss–Weierstrass Shannon-Type Sampling . . 191 15 From Gauss–Weierstrass to Ordinary Lattice Point Poisson–Type Summation 193 15.1 Theta Function and Functional Equation . . . . . . . . . . . 193 15.2 Poisson-Type Summation over Regular Regions (Gauss–Weierstrass Approach) . . . . . . . . . . . . . . . . . 196 15.3 Poisson-Type Summation over Regular Regions (Ordinary Approach) . . . . . . . . . . . . . . . . . . . . . . 199 VII Multivariate Shannon-Type Sampling Formulas over Regular Regions 203 16 Shannon-Type Sampling Based on Poisson-Type Summation Formulas 205 16.1 Fourier-Transformed Values–Based Shannon-Type Sampling (Gauss–Weierstrass Approach) . . . . . . . . . . . . . . . . . 206 16.2 Parseval-Type Identity (Gaussian/Ordinary Approach) . . . 212 16.3 Fourier-Transformed Values–Based Shannon-Type Sampling (Ordinary Approach) . . . . . . . . . . . . . . . . . . . . . . 217 16.4 Functional Values–Based Shannon-Type Sampling (Gaussian Approach) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 17 Paley–Wiener Space Framework and Spline Approximation 223 17.1 Paley–Wiener Reproducing Kernel Structure . . . . . . . . . 223 17.2 Spline Interpolation in Paley–Wiener Spaces . . . . . . . . . 226 17.3 Paley–Wiener Spline Interpolatory Sampling . . . . . . . . . 230 17.4 Paley–Wiener Spline Interpolatory Cubature . . . . . . . . . 231 17.5 Multivariate Antenna Problem . . . . . . . . . . . . . . . . . 232 Contents ix VIII Multivariate Poisson-Type Summation Formulas over Euclidean Spaces 235 18 Poisson-Type Summation Formulas over Euclidean Spaces 237 18.1 Integral Means for Iterated Euler–Green Functions . . . . . . 237 18.2 Euler-TypeSummationFormulaoverIncreasingBallsInvolving Euler–Green Functions . . . . . . . . . . . . . . . . . . . . . 241 18.3 Spherically-Reflected Convergence Criteria (Basic Differentia- bility Order) . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 18.4 Poisson-Type Summation Formula (Heuristic Approach) . . 246 18.5 Euler-TypeSummationFormulaoverIncreasingBallsInvolving Iterated Euler–Green Functions . . . . . . . . . . . . . . . . 247 18.6 Spherically-ReflectedConvergenceCriteria(HigherDifferentia- bility Orders) . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 18.7 Poisson-Type Summation Formula (Rigorous Approach) . . 253 18.8 Hardy–Landau-Type Identities (Spherical Harmonic Weights) 255 IX Multivariate Shannon-Type Sampling Formulas over Euclidean Spaces 261 19 Shannon-Type Sampling Based on Poisson-Type Summation Formulas over Euclidean Spaces 263 19.1 Functional Values–Based Shannon-Type Sampling . . . . . . 264 19.2 Paley–Wiener Reproducing Kernel Structure . . . . . . . . . 267 19.3 Fourier Transformed Values–Based Shannon-Type Sampling 268 19.4 Shannon-Type Sampling Involving Dilated Fundamental Cells 271 19.5 Bivariate Locally-Supported Sampling Functions . . . . . . . 272 19.6 From Gaussian to Ordinary Non-Bandlimited Shannon-Type Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 X Conclusion 279 20 Trends, Progress, and Perspectives 281 20.1 Trendsetting Extensions of Shannon Sampling . . . . . . . . 281 20.2 Methodological Progress in Sampling . . . . . . . . . . . . . 282 20.3 Bridging Role of Sampling in Recovery Problems . . . . . . . 284 20.4 SampTA Conference Series . . . . . . . . . . . . . . . . . . . 285 Bibliography 287 Index 301

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.