ebook img

Last time: Simulated annealing algorithm PDF

26 Pages·2009·0.34 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Last time: Simulated annealing algorithm

Last time: Simulated annealing algorithm Idea: Escape local extrema by allowing (cid:132) “bbaadd mmoovveess,,” bbuutt ggrraadduuaallllyy ddeeccrreeaassee their size and frequency. Note: goal here is to - maximize E. 1 Last time: Simulated annealing algorithm Idea: Escape local extrema by allowing (cid:132) “bbaadd mmoovveess,,” bbuutt ggrraadduuaallllyy ddeeccrreeaassee their size and frequency. Algorithm when goal - is to minimize E. < - 2 This time: Outline Game playing (cid:132) The minimax (cid:132) allgoriitthhm Resource limitations (cid:132) aallpphhaa-bbeettaa pprruunniinngg (cid:132)(cid:132) Elements of chance (cid:132) 3 What kind of games? Abstraction: To describe a game we (cid:132) must capture every relevant aspect of the game. Such as: Chess (cid:132) Tic-tac-toe (cid:132) … (cid:132) Accessible environments: Such (cid:132) ggaammeess aarree cchhaarraacctteerriizzeedd bbyy ppeerrffeecctt information 4 What kind of games? Search: game-playing then consists of (cid:132) a search through possible game positions Unpredictable opponent: introduces (cid:132) uunncceerrttaaiinnttyy tthhuuss ggaammee-ppllaayyiinngg mmuusstt deal with contingency problems 5 Searching for the next move Complexity: many games have a huge (cid:132) sseeaarrcchh ssppaaccee Chess: b = 35, m=100 ⇒ nodes =35 100 (cid:132) if each node takes about 1 ns to expplore then each move will take about 10 50 millennia to calculate. 6 Searching for the next move Resource (e.g., time, memory) limit: (cid:132) ooppttiimmaall ssoolluuttiioonn nnoott ffeeaassiibbllee//ppoossssiibbllee,, thus must approximate PPrruunniinngg:: mmaakkeess tthhee sseeaarrcchh mmoorree eeffffiicciieenntt 11. by discarding portions of the search tree that cannot improve quality result. Evaluation functions: heuristics to 2. evaluate utility of a state without exhaustive search. 7 Two-player games A game formulated as a search problem: (cid:132) Initial state: ? (cid:132) OOppeerraattoorrss:: ?? (cid:132) Terminal state: ? (cid:132) UUttiilliitty ffuncttiion: ?? (cid:132) 8 Game vs. search problem 9 Example: Tic-Tac-Toe Question: 1. b (branching factor) = ? 22. mm ((mmaaxx ddeepptthh)) == ?? 10

Description:
Abstraction: To describe a game we must capture Search: game-playing then consists of Generate Game Tree x. 1 ply. 1 move. o x x o x o. x o. 15
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.