ebook img

Kreyszig - Advanced Engineering Mathematics 9e BW PDF

184 Pages·2010·21.6 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Kreyszig - Advanced Engineering Mathematics 9e BW

Advanced Engineering Mathematics EDITION Advanced Engineering Mathematics ERWIN KREYSZIG Professor of Mathematics Ohio State University Columbus, Ohio @Q WILEY JOHN WILEY & SONS, INC. Vice President and Publisher: Laurie Rosatone Editorial Assistant: Daniel Grace Associate Production Director: Lucille Buonocore Senior Production Editor: Ken Santor Media Editor: Stefanie Liebman Cover Designer: Madelyn Lesure Cover Photo: © John Sohm/ChromosohmJPhoto Researchers This book was set in Times Roman by GGS Information Services Copyright © 2006 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (508) 750-8400, fax (508) 750-4470. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley &Sons, Inc., III River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, E-Mail: [email protected]. Kreyszig, Erwin. Advanced engineering mathematics /Erwin Kreyszig.-9th ed. p. cm. Accompanied by instructor's manual. Includes bibliographical references and index. 1.Mathematical physics. 2. Engineering mathematics. 1.Title. ISBN-13: 978-0-471-72897-9 ISBN-lO: 0-471-72897-7 Printed in Singapore 10 9 8 7 6 5 4 3 2 PREFACE See also http://www.wiley.com/college/kreyszig/ Goal of the Book. Arrangement of Material This new edition continues the tradition of providing instructors and students with a comprehensive and up-to-date resource for teaching and learning engineering mathematics, that is, applied mathematics for engineers and physicists, mathematicians and computer scientists, as well as members of other disciplines. A course in elementary calculus is the soleprerequisite. The subject matter is arranged into seven parts A-G: A Ordinary Differential Equations (ODEs)(Chaps. 1-6) B Linear Algebra. Vector Calculus (Chaps. 7-9) C Fourier Analysis. Partial Differential Equations (PDEs)(Chaps. 11-12) D Complex Analysis (Chaps. 13-18) E Numeric Analysis (Chaps. 19-21) F Optimization, Graphs (Chaps. 22-23) G Probability, Statistics (Chaps. 24-25). This is followed by five appendices: App. 1References (ordered by parts) App. 2 Answers to Odd-Numbered Problems App. 3 Auxiliary Material (see also inside covers) App. 4 Additional Proofs App. 5 Tables of Functions. This book has helped to pave the way for the present development of engineering mathematics. By a modem approach to those areas A-G, this new edition will prepare the student for the tasks of the present and of the future. The latter can be predicted to some extent by ajudicious look at the present trend. Among other features, this trend shows the appearance of more complex production processes, more extreme physical conditions (in space travel, high-speed communication, etc.), and new tasks in robotics and communication systems (e.g., fiber optics and scan statistics on random graphs) and elsewhere. This requires the refinement of existing methods and the creation ofnew ones. It follows that students need solid knowledge of basic principles, methods, and results, and a clear view of what engineering mathematics is all about, and that it requires proficiency in all three phases of problem solving: (cid:129) Modeling, that is, translating aphysical or other problem into a mathematical form, into amathematical model; this canbe an algebraic equation, adifferential equation, a graph, or some other mathematical expression. (cid:129) Solving the model by selecting and applying a suitable mathematical method, often requiring numeric work on a computer. (cid:129) Interpreting the mathematical result in physical or other terms to see what it practically means and implies. It would make no sense to overload students with allkinds oflittle things that might be of occasional use. Instead they shouldrecognize thatmathematics rests onrelatively fewbasic concepts and involves powerful unifying principles. This should give them afirm grasp on the interrelations among theory, computing, and (physical or other) experimentation. v vi Preface PART A PART B Chaps. 1-6 Chaps. 7-10 Ordinary Differential Equations (ODEs) Linear Algebra. Vector Calculus Chaps. 1-4 Chap. 7 Chap. 9 Basic Material Matrices, Vector Differential Linear Systems Calculus Chap. 5 Chap. 6 Series Solutions Laplace Transforms Chap. 8 Chap. 10 Eigenvalue Problems Vector Integral Calculus PART C PART D Chaps. 11-12 Chaps. 13-18 Fourier Analysis. Partial Differential Complex Analysis, Equations (PDEs) Potential Theory Chap. 11 Chaps. 13-17 Fourier Analysis Basic Material I I t Chap. 12 (cid:129)(cid:129) Chap. 18 Partial Differential Equations Potential Theory PART E PART F Chaps. 19-21 Chaps. 22-23 Numeric Analysis Optimization, Graphs Chap. 19 Chap. 20 Chap. 21 Chap. 22 Chap. 23 Numerics in Numeric Numerics for Linear Programming Graphs, Optimization General Linear Algebra ODEs and PDEs PART G GUIDES AND MANUALS Chaps. 24-25 Maple Computer Guide Probability, Statistics Mathematica Computer Guide Chap. 24 Student Solutions Manual Data Analysis. Probability Theory t Chap. 25 Instructor's Manual Mathematical Statistics Preface vii General Features of the Book Include: (cid:129) Simplicity of examples, to make the book teachable-why choose complicated examples when simple ones are as instructive or even better? (cid:129) Independence of chapters, toprovide flexibility intailoring courses to special needs. (cid:129) Self-contained presentation, except for a few clearly marked places where aproof would exceed the level of the book and areference is given instead. (cid:129) Modern standard notation, to help students with other courses, modern books, and mathematical and engineering journals. Many sections were rewritten in amore detailed fashion, to make it asimpler book. This also resulted in abetter balance between theory and applications. Use of Computers The presentation is adaptable to various levels of technology and use of a computer or graphing calculator: very little or no use, medium use, or intensive use of a graphing calculator or of an unspecified CAS (Computer Algebra System, Maple, Mathematica, or Matlab being popular examples). In either case texts and problem sets form an entity without gaps or jumps. And many problems can be solved by hand or with a computer or both ways. (For software, see the beginnings of Part E on Numeric Analysis and Part G on Probability and Statistics.) More specifically, this new edition on the one hand gives more prominence to tasks the computer cannot do, notably, modeling and interpreting results. On the other hand, it includes CAS projects, CAS problems, and CAS experiments, which do require a computer and show its power in solving problems that are difficult or impossible to access otherwise. Here our goal is the combination of intelligent computer use with high-quality mathematics. This has resulted in achange from aformula-centered teaching and learning of engineering mathematics to a more quantitative, project-oriented, and visual approach. CAS experiments also exhibit the computer as an instrument for observations and experimentations that may become the beginnings of new research, for "proving" or disproving conjectures, orforformalizing empirical relationships that areoften quite useful to the engineer as working guidelines. These changes will also help the student in discovering the experimental aspect of modern applied mathematics. Some routine and drill work is retained as a necessity for keeping firm contact with the subject matter. In some of it the computer can (but must not) give the student ahand, but there are plenty of problems that are more suitable for pencil-and-paper work. Major Changes 1. New Problem Sets. Modern engineering mathematics ismostly teamwork. Itusually combines analytic work in the process of modeling and the use of computer algebra and numerics in the process of solution, followed by critical evaluation of results. Our problems-some straightforward, some more challenging, some "thinking problems" not accessible by a CAS, some open-ended-reflect this modern situation with its increased emphasis on qualitative methods and applications, and the problem sets take care of this novel situation by including team projects, CAS projects, and writing projects. The latter will also help the student in writing general reports, as they are required in engineering work quite frequently. 2. Computer Experiments, using the computer as an instrument of "experimental mathematics" for exploration and research (see also above). These are mostly open-ended viii Preface experiments, demonstrating the use of computers in experimentally finding results, which may be provable afterward or may be valuable heuristic qualitative guidelines to the engineer, in particular in complicated problems. 3. More on modeling and selecting methods, tasks that usually cannot be automated. 4. Student Solutions Manual and Study Guide enlarged, upon explicit requests ofthe users. This Manual contains worked-out solutions tocarefully selected odd-numbered problems (to which App. 1 gives only the final answers) as well as general comments and hints on studying the text and working further problems, including explanations on the significance and character of concepts and methods in the various sections of the book. Further Changes, New Features (cid:129) Electric circuits moved entirely to Chap. 2, to avoid duplication and repetition (cid:129) Second-order ODEs and Higher Order ODEs placed into two separate chapters (2 and 3) (cid:129) In Chap. 2, applications presented before variation of parameters (cid:129) Series solutions somewhat shortened, without changing the order of sections (cid:129) Material on Laplace transforms brought into a better logical order: partial fractions used earlier in amore practical approach, unit step and Dirac's delta put into separate subsequent sections, differentiation and integration of transforms (not of functions!) moved to a later section in favor of practically more important topics (cid:129) Second- and third-order determinants made into a separate section for reference throughout the book (cid:129) Complex matrices made optional (cid:129) Three sections oncurves andtheir application inmechanics combined inasingle section (cid:129) First two sections on Fourier series combined to provide a better, more direct start (cid:129) Discrete and Fast Fourier Transforms included (cid:129) Conformal mapping presented in a separate chapter and enlarged (cid:129) Numeric analysis updated (cid:129) Backward Euler method included (cid:129) Stiffness of ODEs and systems discussed (cid:129) List of software (inPart E) updated; another listfor statistics software added (inPart G) (cid:129) References updated, now including about 75 books published or reprinted after 1990 Suggestions for Courses: A Four-Semester Sequence The material, when taken in sequence, is suitable for four consecutive semester courses, meeting 3-4 hours a week: 1st Semester. ODEs (Chaps. 1-5 or 6) 2nd Semester. Linear Algebra. Vector Analysis (Chaps. 7-10) 3rd Semester. Complex Analysis (Chaps. 13-18) 4th Semester. Numeric Methods (Chaps. 19-21) Preface ix Suggestionsfor Independent One-Semester Courses The book is also suitable for various independent one-semester courses meeting 3 hours a week. For instance: Introduction to ODEs (Chaps. 1-2, Sec. 21.1) Laplace Transforms (Chap. 6) Matrices and Linear Systems (Chaps. 7-8) Vector Algebra and Calculus (Chaps. 9-10) Fourier Series and PDEs (Chaps. 11-12, Secs. 21.4-21.7) Introduction to Complex Analysis (Chaps. 13-17) Numeric Analysis (Chaps. 19, 21) Numeric Linear Algebra (Chap. 20) Optimization (Chaps. 22-23) Graphs and Combinatorial Optimization (Chap. 23) Probability and Statistics (Chaps. 24-25) Acknowledgments I am indebted to many of my former teachers, colleagues, and students who helped me directly or indirectly in preparing this book, in particular, the present edition. I profited greatly from discussions with engineers, physicists, mathematicians, and computer scientists, and from their written comments. I want to mention particularly Y. Antipov, D. N. Buechler, S.L.Campbell, R.Carr, P. L.Chambre, V. F.Connolly, Z.Davis, 1.Delany, J. W. Dettman, D. Dicker, L. D. Drager, D. Ellis, W. Fox, A. Goriely, R. B. Guenther, J. B. Handley, N. Harbertson, A. Hassen, V. W. Howe, H. Kuhn, G. Lamb, M. T. Lusk, H. B. Mann, I. Marx, K. Millet, J. D. Moore, W. D. Munroe, A. Nadim, B. S. Ng, J. N. Ong, Jr., D. Panagiotis, A. Plotkin, P.1. Pritchard, W. O. Ray, 1.T. Scheick, L. F. Shampine, H. A. Smith, J. Todd, H. Unz, A. L. ViIIone, H. J. Weiss, A. Wilansky, C. H. Wilcox, H. Ya Fan, and A. D. Ziebur, all from the United States, Professors E. J. Norminton and R. Vaillancourt from Canada, and Professors H. Florian and H. Unger from Europe. I can offer here only an inadequate acknowledgment of my gratitude and appreciation. Special cordial thanks go to Privatdozent Dr. M. Kracht and to Mr. Herbert Kreyszig, MBA, the coauthor of the Student Solutions Manual, who both checked the manuscript in all details and made numerous suggestions for improvements and helped me proofread the galley and page proofs. Furthermore, I wish to thank John Wiley and Sons (see the list on p. iv) as well as GGS Information Services, in particular Mr. K. Bradley and Mr. J. Nystrom, for their effective cooperation and great care in preparing this new edition. Suggestions of many readers worldwide were evaluated in preparing this edition. Further comments and suggestions for improving the book will be gratefully received. ERWIN KREYSZIG

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.