Karpuk Aircraft KR-1 Multi-Mission Amphibian Response to 2016/2017 AIAA Foundation Graduate Individual Aircraft Design Competition Presented by Embry-Riddle Aeronautical University (Daytona Beach) Department of Aerospace Engineering Karpuk Aircraft Stanislav Karpuk Design Engineer AIAA account number: 511739 E-mail: [email protected] Advisor: Dr Snorri Gudmundsson Executive Summary Karpuk Aircraft would like to present a response to the request for proposal (RFP) provided by the American Institute of Aeronautics and Astronautics (AIAA) for 2016-2017 year. Due to potential benefits of amphibious passenger and cargo aircraft for regional aviation with limited resources to create airports and lack of existent aircraft designed for the presented requirements, the Company was asked to design an aircraft capable of carrying between 20 and 49 passengers or 5000lb of payload at the cruise speed no less than 200 knots. The aircraft shall be able to complete both VFR and IFR flights and complete four different missions. According to the first mission, the aircraft must fly 259nmi with 20 passengers and be able to take-off within 1500ft over a 50ft obstacle to a runway with dry pavement at Sea Level (SL) and 5000ft altitude with air temperature of +180F at SL. The second mission is similar to the first, but the take-off is performed from water and the take-off distance shall not exceed 1900ft over a 50ft obstacle. The third mission requires the aircraft to complete a 1000ft flight with maximum amount of passengers, and the last one asks the aircraft to demonstrate a 500nmi flight with 5000lb cargo and be prepared for the next flight within 60 minutes. The aircraft shall be capable of taking off and landing from different quality of runways as well as fresh and salt water. In addition, the aircraft must demonstrate 20% reduction in fuel burn per passenger comparing to existing aircraft for a similar range. The aircraft will be certified with FAA 14 CFR Part 25, and the passenger model shall enter into the service in 2027. The KR-1 designed by Karpuk Aircraft is a conventional top-wing twin-turboprop aircraft featuring conventional tail for Short take-off and landing (STOL) Table of Contents List of Figures .............................................................................................................................................. 7 Index of tables ........................................................................................................................................... 10 1. Introduction ........................................................................................................................................... 12 1.1. Mission Analysis .............................................................................................................................. 12 1.2. Competition study ............................................................................................................................ 13 2. Concept selection and Initial sizing ..................................................................................................... 15 2.1. Aircraft Concept Trade study ........................................................................................................... 15 2.2 Design Sizing and layout .................................................................................................................. 19 3. Aerodynamic Design and analysis ....................................................................................................... 20 3.1. Airfoil Selection ............................................................................................................................... 20 3.2. Wing configuration Design .............................................................................................................. 22 3.3. Lift analysis ...................................................................................................................................... 22 3.4. Drag analysis .................................................................................................................................... 25 3.5. High-Lift Devices ............................................................................................................................ 28 3.6. Aerodynamic performance ............................................................................................................... 29 4. Propulsion .............................................................................................................................................. 30 4.1. Engine selection ............................................................................................................................... 30 4.2. Propeller analysis and thrust estimation ........................................................................................... 31 4.3. Engine Placement ............................................................................................................................. 33 5. Weights .................................................................................................................................................. 34 5.1. Weight Estimations .......................................................................................................................... 34 5.2. Center of Gravity ............................................................................................................................. 36 6. Hull and floats design ........................................................................................................................... 37 6.1. Hull shape Design ............................................................................................................................ 37 6.2. Floats design .................................................................................................................................... 42 7. Aircraft performance ............................................................................................................................ 43 7.1. Take-off and Landing ...................................................................................................................... 43 7.1.1. Ground take-off and landing ..................................................................................................... 44 7.1.2. Water take-off and landing ....................................................................................................... 47 7.2 Climb ................................................................................................................................................ 50 5 7.3. Cruise ............................................................................................................................................... 50 7.4. Steady-state turn ............................................................................................................................... 52 7.5. Descent ............................................................................................................................................. 53 8. Structures............................................................................................................................................... 53 8.1. V-n Diagram .................................................................................................................................... 53 8.2. Material selection ............................................................................................................................. 54 8.3. Wing and tail structure ..................................................................................................................... 55 9. Stability and Control ............................................................................................................................ 60 9.1. Static stability and control analysis .................................................................................................. 60 10. Aircraft systems and layout................................................................................................................... 66 10.1. Landing gear .................................................................................................................................. 66 10.2. Cabin pressurization and air conditioning...................................................................................... 69 10.3. Fuel system .................................................................................................................................... 69 10.4. Fuselage layout .............................................................................................................................. 69 10.5. Anti-icing system ........................................................................................................................... 72 11. Cost analysis ........................................................................................................................................ 73 11.1 Fuel economy .................................................................................................................................. 73 11.2 Research, Development, Testing, and Evaluation .......................................................................... 74 11.3. Operational Costs ........................................................................................................................... 75 12. Compliance Matrix ............................................................................................................................. 76 13. Conclusion ........................................................................................................................................... 76 References .................................................................................................................................................. 77 6 List of Figures Figure 1.1.1: Mission profile for a 1000nm passenger mission…………………………………………...13 Figure 2.1.1: Concept 1 model…………………………………………………………………………….15 Figure 2.1.2: Concept 2 model………………………………………………………………………….....16 Figure 2.1.3. Concept 3 model………………………………………………………………………….....16 Figure 2.1.4. Concept 4 model……………………………………………...…………………………......17 Figure 2.1.5. Weights for different strut configurations………………………………………………......18 Figure 2.1.6. CD for different strut…………………………………………………………………….......18 Figure 2.1.7. Fuel-to-Weight ratios for different strut configurations…………………………………….19 Figure 2.2.1. Constraint diagram…………………………………………………………………………..19 Figure 3.1.1. NACA 65(2)-415 airfoil geometry…………………………………………………………..22 Figure 3.2.1. Wing layout……………………………………………………………………………….....22 Figure 3.3.1. KR-1 VSP model…………………………………………………………………………….24 Figure 3.3.2. Lift coefficient comparison………………………………………………………………….24 Figure 3.3.3. Lift distribution at maximum AOA from OpenVSP…………………………………………24 Figure 3.4.1. NACA65(2)-415 O-grid……………………………………………………………………..26 Figure 3.4.2. Solution residuals……………………………………………………………………………26 Figure 3.4.3. Airfoil pressure………………………………………………………………………………26 Figure 3.4.1. Parasitic drag build-up at cruise speed………………………………………………………27 Figure 3.5.1. Lift coefficient for different configurations…………………………………………………28 Figure 3.5.2. Drag coefficient for different configurations………………………………………………...29 Figure 3.6.1 Lift-to-drag ratio for different aircraft configurations………………………………………..30 Figure 4.1.1. Pratt & Whitney Canada PT6A-67B…………………………………………………………31 Figure 4.2.1. Thrust output at different altitudes…………………………………………………………..32 Figure 4.2.2. Efficiency at different altitudes ……………………………………………………………..32 Figure 4.3.1. Engine layout and propeller dimensions…………………………………………….............33 Figure 5.1.1. Weight breakdown comparison using different methods……………………………………35 Figure 5.2.1. Load and balance diagram for Take-off, Landing, and Cruise………………………………36 Figure 6.1.1. Hull nomenclature and common dimensions ……………………………………………….37 Figure 6.1.2. Front view and hull dimensions……………………………………………………………..38 7 Figure 6.1.3 Side view and hull dimensions………………………………………………………………..39 Figure 6.1.4. Hull load factor vs stall speeds at different deadrise angles for landing configuration……..40 Figure 6.1.5. Weight coefficient relation…………………………………………………………………..41 Figure 6.1.6. Afterbody deadrise angle relation……………………………………………………………41 Figure 6.1.7. Sternpost angle relation at step depths………………………………………………………41 Figure 6.1.8. Aftbody-to-beam ratio based on step depth…………………………………………………42 Figure 6.2.1. Float volume and water clearance vs float location…………………………………………42 Figure 6.2.2. Float layout and dimensions…………………………………………………………………43 Figure 7.1.1. Take-off run for for the 250nmi STOL mission with 20 passenger at sea level…………….45 Figure 7.1.2. Water hull resistance estimation…………………………………………………………….47 Figure 7.1.3. Trim angle estimation……………………………………………………………………….47 Figure 7.2.1. Climb performance for a 1000nmi mission weight with full payload………………………50 Figure 7.3.1. Flight Envelope……………………………………………………………………………...51 Figure 7.3.2. Payload Range Curve………………………………………………………………………..51 Figure 7.4.1. Turn Performance Map………………………………………………………………………52 Figure 7.4.1. Descent Performance Diagram………………………………………………………………53 Figure 8.1.1. V-n Diagram at cruise altitude………………………………………………………………54 Figure 8.3.1. Wing coordinate system used for structural analysis………………………………………..55 Figure 8.3.2. Internal forces and moments experienced by the wing. V=215KTAS, H=16500ft, n=3……56 Figure 8.3.3. Internal forces and moments experienced by the H-tail. V=215KTAS, H=16500ft, n=3……56 Figure 8.3.4. Internal forces and moments experienced by the H-tail. V=215KTAS, H=16500ft, n=3……57 Figure 8.3.5. Wing Front and rear spar dimensions………………………………………………………..58 Figure 8.3.6. Horizontal tail Front and rear spar dimensions………………………………………………59 Figure 8.3.7. Vertical Front and rear spar dimensions…………………………………………………….59 Figure 8.3.8. Wing structural layout………………………………………………………………………59 Figure 8.3.9. Empennage structural layout………………………………………………………………..59 Figure 8.3.10. Shear and Moment diagrams of the fuselage……………………………………………....60 Figure 8.3.11. Stringers layout…………………………………………………………………………….60 Figure 9.1.1. Horizontal tail layout………………………………………………………………………...61 Figure 9.1.2. Horizontal tail vertical location diagram……………………………………………………..61 Figure 9.1.3. Engine-out case free-body diagram ………………………………………………………...62 8 Figure 9.1.4. Vertical tail layout…………………………………………………………………………...62 Figure 9.1.5. Wake blockage diagram……………………………………………………………………..63 Figure 9.1.6. Aileron layout………………………………………………………………………………..63 Figure 9.2.1. Longitudinal motion poles and zeros………………………………………………………..64 Figure 9.2.2. Lateral motion poles and zeros………………………………………………………………64 Figure 10.1.1. Longitudinal landing gear location………………………………………………………....66 Figure 10.1.2. Lateral landing gear location……………………………………………………………….67 Figure 10.1.3. Landing gear retraction…………………………………………………………………….68 Figure 10.1.3. Landing gear layout………………………………………………………………………...69 Figure 10.3.1. Fuel tank layout…………………………………………………………………………….70 Figure 10.4.1. Cabin top view……………………………………………………………………………..70 Figure 10.4.2. Cabin front view ………………………………………………………………………….71 Figure 10.4.3. Seat pitch…………………………………………………………………………………...71 Figure 10.4.4. Doors dimensions…………………………………………………………………………..71 Figure 10.4.5. KR-1 cargo configuration………………………………………………………………….71 Figure 10.4.6. Baggage compartment side view…………………………………………………………..72 Figure 10.4.7. Cockpit view……………………………………………………………………………….72 Figure 10.5.1. Anti-icing cross-section…………………………………………………………………….72 Figure 10.5.2. Anti-icing system layout……………………………………………………………………72 Figure 11.2.1. RTD&E Cost breakdown…………………………………………………………………..74 Figure 11.2.2. Production breakeven point (Eastlake Model) ……………………………………………..75 Figure 11.3.1. Operational cost breakdown………………………………………………………………..75 9
Description: