ebook img

Khovanskii bases of Cox-Nagata rings and tropical geometry PDF

0.18 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Khovanskii bases of Cox-Nagata rings and tropical geometry

Khovanskii Bases of Cox-Nagata Rings and Tropical Geometry MarthaBernal,DanielCorey,MariaDonten-Bury,NaokiFujita,andGeorgMerz 7 1 0 2 n a J 2 1 Abstract The Cox ring of a delPezzo surface of degree3 has a distinguished set of27 minimalgenerators.We investigateconditionsunderwhichthe initialforms ] G of these generatorsgeneratethe initialalgebraofthis Cox ring.SturmfelsandXu A provide a classification in the case of degree 4 del Pezzo surfaces by subdividing . the tropical Grassmannian TGr(2,Q5). After providing the necessary background h on Cox-Nagata rings and Khovanskiibases, we review the classification obtained t a by Sturmfels and Xu. Then we describe our classification problem in the degree m 3 case and its connections to tropical geometry. In particular, we show that two [ naturalcandidates,TGr(3,Q6)andtheNarukifan,areinsufficienttocarryoutthe classification. 1 v 5 3 4 3 0 . 1 0 7 MarthaBernal 1 Unidad Acade´mica de Matema´ticas UAZ, Calzada Solidaridad, Zacatecas, Mexico, e-mail: : [email protected] v i DanielCorey X YaleUniversity,DepartmentofMathematics,e-mail:[email protected] r a MariaDonten-Bury University of Warsaw, Institute of Mathematics, Banacha 2, 02-097 Warszawa, Poland, e-mail: [email protected] NaokiFujita Department of Mathematics, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-ku, Tokyo152-8551,Japan,e-mail:[email protected] GeorgMerz Mathematisches Institut, Georg-August Universita¨t Go¨ttingen Bunsenstraße 3-5, D-37073 Go¨ttingen,Germany,e-mail:[email protected] 1 2 MarthaBernal,DanielCorey,MariaDonten-Bury,NaokiFujita,andGeorgMerz 1 Introduction ThestartingpointforthischapteristhefollowingproblemproposedbySturmfels and Xu as [26, Problem 5.4]: determine all equivalence classes of 3-dimensional sagbisubspacesofk6.Inthenextfewparagraphsweexplainitsstatementindetail andgiveanoutlineofthechapter. Letusbeginwithclarifyingtwoimportantaspectsofournotation.First,instead of the names sagbi bases resp. sagbi subspaces (where sagbi, first used in [20], standsfor“subalgebraanaloguetoGro¨bnerbasesforideals”)wewillusethename Khovanskiibasesresp. Khovanskiisubspaces.Thisnewnamewasintroducedina muchmoregeneralsettinginarecentarticle[12]. Second,wemakesomeassumptionsonthefieldk.Weusuallytakektobethe fieldofrationalfunctionsQ(t),buttoformulateandworkonthisproblemonemay consider any other field with a nontrivialvaluation. The residue field of k for the consideredvaluationwillbedenotedbyk. ThefundamentalobjectsforthischapterareKhovanskiibasesandmonericsets. WerepeattheirdefinitionsafterSturmfelsandXu;see[26,Sect.3]formoredetails andcommentsontheirproperties.Byval: k×→Zwedenoteavaluationmapofk. Ifk=F(t)forsomefieldF,weusethefollowingvaluation:val(p)∈Zistheunique integerw suchthatt−w p(t)takesanonzerovalueatt=0.Then,for f ∈k[x ,...,x ] 1 n wecancomputeitsinitialformin(f). Ifw istheminimumofvalforcoefficients 0 ofallmonomialsin f,then in(f)=(t−w 0f)|t=0∈k[x1,...,xn]. Thatis,in(f)identifiesallmonomialsof f whosecoefficientshavesmallestvalua- tion. Definition1.1.We calla subsetF ⊂k[x ,...,x ] monericif in(f) is a monomial 1 n forall f ∈F. For a k-subalgebraU ⊆k[x ,...,x ] we define the initial algebrain(U) as the 1 n k-subalgebrageneratedbyin(f)for f ∈U. Definition1.2.WesaythatasubsetF ⊂U isaKhovanskiibasisofak-subalgebra U ⊆k[x ,...,x ]if 1 n • F ismoneric,and • theinitialalgebrain(U)isgeneratedby{in(f)|f ∈F}asak-algebra. We are interested in Khovanskii bases of Cox-Nagata rings, which will be de- scribed in Section 2. After they are introduced, we will be able to explain how a 3-dimensional subspace of k6 determines a basis, possibly a Khovanskii basis, of the Cox ring of a del Pezzo surface of degree 3. We say that such a subspace ismoneric(resp.Khovanskii)ifthecorrespondingbasisismoneric(resp.Khovan- skii),seeDefinition2.4.Welookatmonericsubspacesuptoanequivalencerelation whichrespectsthepropertyofbeingaKhovanskiisubspace,seeDefinition2.5. KhovanskiiBasesofCox-NagataRingsandTropicalGeometry 3 We suggest that the reader treats this text as an introduction to the concept of Khovanskiibasesandrelatedresearchproblems.Forus,understandingthegeomet- ricmotivationandconnectionswasasimportantassolvingthecombinatorialclas- sificationproblemitself.Thisisthereasonwhy,besidespresentingourapproachto answeringthemainquestion,wealsospendsignificantamountoftimeonexploring itsbackground. In Section 2 we define the Cox ring and explain its construction for del Pezzo surfaces.WealsointroducetheNagata’saction,whichprovidesalinkbetweenlin- ear subspacesof kn and choices of initial formsof generatorsof Cox rings of del Pezzosurfaces(i.e.candidatesformonericorKhovanskiibasesoftheCoxring). Section3isdedicatedtoexplainingthegeometricconsequenceofaKhovanskii basisintermsofdegenerations.Roughlyspeaking,aKhovanskiibasisofa(finitely generated)subalgebraU of the polynomialringyields a degenerationof Spec(U) to a toric variety. We show that we obtain even more if we choose a Khovanskii basisoftheCoxringCox(X)ofavarietyX:wedonotonlyobtainatoricdegenera- tionofSpec(Cox(X)),butalsotoricdegenerationsofX withrespecttoallpossible embeddings. In Section 4 we explain and give examples for the problem which motivated SturmfelsandXutostudyKhovanskiibasesofCox-Nagatarings.Itturnsoutthat aKhovanskiibasisallowsustocomputetheHilbertfunctionofadelPezzosurface with respect to a specific embedding by counting lattice points in dilations of a rationalconvexpolytope. Finally, Sections 5 and 6 describe our first attempts to classify 3-dimensional Khovanskiisubspacesofk6. Firstwe describetwotropicalvarietieswhichweex- pecttoberelatedtotheproblem:thetropicalGrassmannianTGr(3,6)andthetrop- icalmodulispaceofdelPezzosurfacesofdegree3.Thenweexplainhowwetried to use them as parametrizing spaces for moneric and Khovanskii subspaces. The conclusionisthatneitherofthesemodelshasthecombinatorialstructuresuitableto playthisrole. 2 Cox-NagataRings Let G be a linear group acting on a polynomial ring R over a field k. Hilbert’s fourteenth problem asks whether the ring of invariants RG is a finitely generated K-algebra.TheanswerisaffirmativewhenthegroupGisreductiveandalsowhen G=G .Nagataconsideredtheactionofacodimension3subspaceG⊂Cn acting a onR=C[x ,...,x ,y ,...,y ]via 1 n 1 n x 7→x andy 7→y +l x, i i i i i i where(l ,...,l )∈G.HeprovedthattheringofinvariantsRGisnotfinitelygener- 1 n atedforn=16,see[17].MukairealizedtheringofinvariantsRG asacertainRees algebraandassuch,itis isomorphicto the Coxringofa blow-up([16]). Mukai’s 4 MarthaBernal,DanielCorey,MariaDonten-Bury,NaokiFujita,andGeorgMerz description of RG providesconditions for it to be finitely generated and a way of computingitsgenerators,atleastforcodimG≤3. In this section we review Mukai’s description of RG. We recall the definition ofCoxringsandstudywith somemoredetailtheisomorphismbetweenRG when codimG=3 and the Cox ring of the blow-up of P2 at n points in general posi- tion. Nextwe specialize to the blow-upof six pointsandgive a descriptionofthe invariantsthatgenerateRG. 2.1 Nagata’saction LetR=k[x ,...,x ,y ,...,y ]beanalgebrawithaZn-gradingviasettingdeg(x)= 1 n 1 n i deg(y)=e,wheree ,...,e isastandardbasisofZn.LetG⊂Cnbeasubspaceof i i 1 n codimensionrgivenbytheequations a t +...+a t =···=a t +...+a t =0. 111 1nn r11 rnn We considerNagata’sactionofGonR.Asx isinvariantforeveryi=1,...,n,we i canextendtheactiontothelocalization y y R =R[x−1,...,x−1]=k[x±1,...,x±1, 1,..., n]. x 1 n 1 n x x 1 n The grading on R extends naturally to a grading on R with deg(x−1)=−e. x i i Now, l =(l ,...,l )∈G acts on R by x 7→x and yi 7→ yi +l . Let y′ = yi. 1 n x i i xi xi i i xi Thenl ∈G acts onk[x±1,...,x±1,y′,...,y′] by x 7→x andy′ 7→y′+l . A direct 1 n 1 n i i i i i computationshowsthattheinvariantringRGisgeneratedoverk[x±1,...,x±1]bythe x 1 n linearpolynomials l′:=a y′ +···+a y′, 1≤i≤r. i i1 1 in n Letx =(cid:213) n x and 0 j=1 j y y l =x ·l′= x a 1 +···+a n . (1) i 0 i 0 i1x inx (cid:0) (cid:1)(cid:0) 1 n(cid:1) We define the algebra U := k[l ,...,l ] ⊂ R ∩RG. Let V be the k-vector space 1 r x spanned by l ,...,l . ThenU is a Z-graded ring andV is its degree one part. We 1 r also letV ⊂V be the polynomialsinV thatdo nothavey (cid:213) x asa monomial i i i6=j j andI ⊂U theidealgeneratedbyV.Thenwehavethefollowing: i i Proposition2.1.TheinvariantalgebraRGistheextendedmulti-Reesalgebra U[x ,...,x ]+ (cid:229) Id1∩···∩Idn x−d1···x−dn ⊂U[x±1,...,x±1]. 1 n 1 n 1 n 1 n d∈Zn(cid:0) (cid:1) Proof. Aproofisfoundin[16]orinthebook[1],section 4.3.4. ⊓⊔ KhovanskiiBasesofCox-NagataRingsandTropicalGeometry 5 2.2 Cox Rings TheCoxringofasmoothprojectivevarietyX overthefieldk,withfinitelygener- ateddivisorclassgroupCl(X),isthering Cox(X)= H0(X,O (a D +···+a D )), X 1 1 r r (a1,..M.,ar)∈Zr where D ,...,D is a fixed basis of Cl(X)≃Zr. This ring has the structure of a 1 r k-algebra.WhenitisfinitelygeneratedthevarietyX iscalledaMoriDreamSpace. ThisisthecaseforsmoothdelPezzosurfacesofdegree1≤d≤9,forwhichgen- eratorsandrelationsamongthemareknown. WeletAbeanr×nmatrixwithentriesinksuchthatGisthekernelofA.We denotebya(i)thei-thcolumnvectorofAandassumethattheyarepairwiselinearly independent.DenotebyX thedelPezzosurfaceresultingfromtheblow-upofPr−1 G atndifferentpointswithhomogeneouscoordinatesa(i).ThedelPezzosurfaceX G isdeterminedbyGonlyuptoisomorphism:anisomorphismofP2 asalinearmap leavestherowspaceofA,andthereforealsothekernelG,invariantandinducesan isomorphismofthecorrespondingdelPezzosurfaces.ThePicardgroupPic(X )is G isomorphictoZn+1andisgeneratedbythepropertransformofthehyperplaneclass H andtheclassesoftheexceptionaldivisorsE fori=1,...,n.ThustheCoxringof i X is: G Cox(X )= H0(X ,O(d H+d E +···+d E )). G G 0 1 1 n n (d0,...,Mdn)∈Zn+1 GivenadivisorclassD=d H+d E +···+d E ,thecorrespondinghomogeneous 0 1 1 n n partCox(X ) is thespaceH0 X ,O(d H+···+d E ) .Ifd ≥0thenD isthe G D G 0 n n 0 classofthepropertransformof(cid:0)adegreed0hypersurfaceth(cid:1)athasmultiplicity−diin thepointa(i).ThuswecanidentifyH0(X ,O(d H+···+d E ))withthespaceof G 0 n n homogeneouspolynomialsofdegreed ink[z]=k[z ,···,z ]thathavemultiplicity 0 1 r at least −d at a(i). Let I′ be the vanishingideal in k[z] of the pointa(i). Then the i i lattervectorspaceisprecisely I′ −d1∩···∩ I′ −dn (2) 1 n d0 (cid:0)(cid:0) (cid:1) (cid:0) (cid:1) (cid:1) where(Ii′)−di =k[z]if−di≤0.Ifd0<0thenH0(XG,O(D))=0. Letusconsiderthemap Cox(X ) ≃H0(X ,O(D))−→RG G D G d givenby g(z ,...,z )7→g(l ,...,l )xd1...xdn, 1 r 1 r 1 n where d = (d +d ,...,d +d ), and l,1≤i≤r are as in (1). Recall that l = 0 1 0 n i i x l′ where l′ ∈ RG are the invariants in R of degree 0 ∈ Zn. As g is homoge- 0 i i x x 6 MarthaBernal,DanielCorey,MariaDonten-Bury,NaokiFujita,andGeorgMerz neous of degree d , then g(l ,...,l ) = xd0g(l′,...,l′) is an invariant of degree 0 1 r 0 1 r (d0,...,d0)∈Zn. Thus g(l1,...,lr)xd11...xdnn is indeed an element of RG of degree (d +d ,...,d +d ).Nowwenoticethat 0 1 0 n RG=U[x±1,...,x±1]∩R=k[l ,...,l ][x±1,...,x±1]∩R. 1 n 1 r 1 n Givend∈Zn,anyhomogeneouselement f ∈RGadmitsapresentationoftheform d f = (cid:229) h (l ,...,l )xv1...xvn v 1 r 1 n v∈Zn where the h are homogeneousof degree d−v. On the other hand, the l are ho- v i mogeneous of degree (1,...,1)∈Zn and therefore d−v=(d ,...,d ) for some 0 0 d ≥0.Thus,h (z ,...,z )∈k[z ,...,z ] .Moreover,furthercalculationsshowthat hv0(l1,...,lr)xv11v...1xvnn beirngapol1ynomriadl0inRimpliesthathv(l1,...,lr)∈(Ii)−vi and thereforehv(z1,...,zr)∈(Ii′)−vi.Thus,givend∈Znfixed,wehaveanisomorphism Cox(X ) −→(RG) , g(z)7→g(l ,...,l )xd1···xdn (3) G D d 1 r 1 n D=(d0,M...,dn)∈Zn, d=(d0+d1,...,d0+dn) where d =(d +d ,...,d +d ). Thisand the previouspropositionprovethe fol- 0 1 0 n lowing: Proposition2.2.Cox(X )isisomorphictoRG. G WeshouldobservethattheidealsI′ in(2)donotchangeifwerescalethecolumns i ofA,yettheimageofapolynomialgundertheisomorphism(3)canbedifferent. 2.3 TheCox ring ofa delPezzo surface In[2]itwasproventhattheCoxringofadelPezzosurfaceofdegreeatleast2is generatedbytheglobalsectionsovertheexceptionalcurves.Anexceptionalcurve is one with self-intersection −1. Such a curve has only one global section (up to scalarmultiplication).Weusethisknowledgeandtheisomorphismoftheprevious parttocomputeasetofgeneratorsforRG. Example2.3.Before we moveto the case of delPezzo surfacesof degree3, most important for us, let us say what the Cox ring of a del Pezzo surface of degree 4 lookslike.ThisisasketchofasolutiontoProblem6onSurfacesin[24]. We need to identify all exceptional curves on the blow-up of P2 in 5 points P,...,P ingeneralposition.First,thereare5exceptionaldivisorsoftheblow-up, 1 5 E ,...,E .ThenonechecksthatstricttransformsoflinesthroughtwopointsP,P 1 5 i j areexceptionalcurves.Asdivisors,theyarelinearlyequivalenttoH−E −E .Fi- i j nally,thereisoneconicthroughall5chosenpoints,anditsstricttransformalsois KhovanskiiBasesofCox-NagataRingsandTropicalGeometry 7 anexceptionalcurve,linearlyequivalentto2H−E −E −E −E −E .Thuswe 1 2 3 4 5 have16generatorsoftheCoxringintotal. Relationsbetweenthemcome,roughlyspeaking,fromthepossibilityofdecom- posingadivisorclassassumsoftheonesgivenaboveinafewdifferentways.For instance,2H−E −E −E −E canbewrittenas: 1 2 3 4 (H−E −E )+(H−E −E )=(H−E −E )+(H−E −E )= 1 2 3 4 1 3 2 4 =(H−E −E )+(H−E −E ). 1 4 2 3 ThisleadtorelationsofcorrespondingsectionswhichgeneratetheCoxring.Agood explanationof these computations(also for del Pezzo surfaces of smaller degree) canbefoundintheMScthesisofJ.C.Ottem,[19].Itisworthnotingthatdifferent choicesofpointsgivedifferentrelations,buttheCoxringsareisomorphic. Now, let G and A be as before with r =3, n=6 and suppose that the points a(i)∈Pr−1 areingeneralposition,thatis,nothreeofthemlieonalineandnosix on a conic. Then X is a del Pezzo surface of degree 3 and it has 27 exceptional G curves,determinedin a verysimilarway as inExample2.3. Theseare theclasses of: • theexceptionaldivisorsE,1≤i≤6, i • the propertransformsof lines which passthroughpairs of the blown-uppoints L ,1≤i< j≤6,and ij • thepropertransformsofconicsthroughfiveofthesepoints,Q with1≤i≤6. i TheclassesinPic(X )ofthesecurvesareE,H−E −E and2H−(cid:229) E .This G i i j j6=i j meansthatCox(X)isgeneratedbytheimagesunder(3)oftheuniquepolynomials gink[z ,...,z ]havingtheprescribedmultiplicityontheblown-uppoints.Nowwe 1 r computetheseimagesexplicitly.Forsimplicitywewilldenote[6]={1,...,6}. Let us start with the exceptionaldivisors E. We have that the only monomials i ofdegree0 in k[z] arethe non-zeroconstantsandtheyallbelongto (I′)−1=k[z]. i Thus,by(3)weget (I′)−1 =k[z] ≃Cox(X ) ≃(RG) , i 0 0 G Ei ei (cid:0) (cid:1) wheree ∈Z6isthei-thstandardbasisvector,andthisisomorphismmaps17→1·x. i i Thustheelements{x |1≤i≤6}aregeneratorsofRG. i For each class of the form H−E −E , there is a polynomialof degreeone in i j I′∩I′,namely,theequationoftheuniquelinethroughthepointsa(i) anda(j).This i j is (a a −a a )z +(a a −a a )z +(a a −a a )z . 2j 3i 2i 3j 1 1i 3j 1j 3i 2 1j 2i 1i 2j 3 (cid:0) (cid:1) TheimageofthispolynomialinRGis g(l ,...,l )·(x x )−1=− (cid:229) p y ( (cid:213) x ), 1 3 1 2 ijk k s k6=i,j s∈/{i,j,k} wherethe p arethePlu¨ckercoordinatesofA,andithasdegree(cid:229) e ∈Z6. ijk k6=i,j k 8 MarthaBernal,DanielCorey,MariaDonten-Bury,NaokiFujita,andGeorgMerz Finally,fortheclass2H−(cid:229) E thereisalsoa uniquepolynomialofdegree j6=m j 2 in ∩ I′: the defining polynomial of the unique conic through the five points j6=m j differentfroma(m).Adirectcomputationshowsthattheimageofthisconichasthe form (cid:229) (cid:213) (cid:229) (cid:213) G =(x ) p yy p x +(y )· (u −v)y x m m ([6]\i,j,m) i j ijk k m i i i k i<j,i,j∈[6]\m k∈[6]\{i,j,m} i∈[6] k6=i whereu −v isabinomialofdegree4inthePlu¨ckercoordinatesofA.Thisconic i i generatorhasdegreee +(cid:229) e m i∈[6] i It is worth noting that even when it is difficultto write the exactexpression of the polynomialsG , its computationis straightforward.Also, we observethatthe m generatorsofRG aredetermineduptoscalarmultiplebyGsincethePlu¨ckercoor- dinatesofthematrixAare.Yet,asobservedafterProposition2.2,RGisnotitselfan invariantoftheisomorphismclassofX . G 2.4 Monericand Khovanskiisubspaces. The precedingparagraphsshow howa codimension3 vectorsubspaceG⊂kn, or a matrix containing its basis, gives a minimal generating set of the Cox ring of a del Pezzo surface of degree 9−n. Having covered this, we can finally introduce Khovanskiiandmonericsubspaces. Definition2.4.Wesaythatacodimension3subspaceG⊂kn isKhovanskii(resp. moneric)ifthecorrespondingminimalgeneratingsetoftheCoxringofadelPezzo surfaceofdegree9−nisaKhovanskii(resp.moneric)basisofRG. We would like to consider moneric and Khovanskii bases up to the following equivalencerelation: Definition2.5.Codimension3subspacesG,G′⊂knwillbecalledequivalentifthe correspondinginitialalgebrasoftheCoxringofadelPezzosurfaceareequal. NotethatifGandG′ determinethesameinitialtermsoftheminimalgenerating setofcorrespondingCoxringsthentheyareequivalent. 3 Khovanskii BasisandDegeneration ofthe CoxRing Degeneration of varieties is a powerfultool in algebraic geometry, used on many different occasions. The idea behind it is to introduce a notion of a “limit” of a family of algebraicvarieties. However,since the Zariski topologyon an algebraic varietyisnotwellbehavedinthissense(itisforexamplealmostneverHausdorff), itturnsoutthatabetterreplacementforanarbitraryfamilyofvarietiesisthenotion KhovanskiiBasesofCox-NagataRingsandTropicalGeometry 9 ofaflatfamily.Thisnotionhasthedesirablefeaturethatlimitpointsexistandare unique if we parametrize over a one dimensional variety. It also ensures that the pointsin the family, includingthe limit pointhave the same Hilbertfunction,and thussharemanyinvariantssuchase.g.thedegreeandthegenus.Degenerationsthus motivate the following approach: to compute properties of a given variety X first degeneratethevarietytoamoreaccessiblevarietyX′andthendothecomputations onthisvariety.ThisideacanberealizedinthenotionofaKhovanskiibasis. 3.1 Toricdegenerations Thefollowingdefinitionmakesprecisewhatwemeanbyadegenerationofavariety. Definition3.1.Let (k◦,m) be a discrete valuation ring and X be a variety over k = Quot(k◦). A degeneration of the variety X is a flat family X˜ → Spec(k◦) such that X˜ ×k◦Spec(k)∼=X. It is called a toric degeneration if the special fiber X˜×k◦Spec(k◦/m)isatoricvariety. In this section we provide a method for degeneratinga variety with respect to all possible embeddingsat once. The idea is to degenerate the Cox ring of the given varietywhichcontainsinformationaboutallpossibleembeddingsofthevariety.In order to talk about degenerationsof a projective variety with respect to a specific embedding,weneedtotakethechoiceofaveryamplelinebundleintoaccount. Definition3.2.Let(k◦,m)beadiscretevaluationringandX beaprojectivevariety overk,togetherwithaveryamplelinebundleL.AfamilyX˜ →Spec(k◦)together withalinebundleL˜ iscalledatoricdegenerationof Xwithrespecttotheembedding givenbyLifitisatoricdegeneration,L˜ isflatoverSpec(k◦),wehaveL|X˜×Spec(k)∼= LandthelinebundleL isample. |X˜×Spec(k◦/m) NotethatintheabovedefinitionwedidnotassumethatL isveryam- |X˜×Spec(k◦/m) ple.However,if we considerthe Veroneseembeddingof theembeddedvarietyX, we may assume that X as well as the special fiber are embeddedin the same PN. MoreconcretelybyreplacingLwithahighenoughmultipleL⊗k,wecanmakesure thatL isalsoveryample. |X˜×Spec(k◦/m) 3.2 Degenerations ofdelPezzo surfaces viathe Cox Ring Letk=F(t)fora fieldF ofcharacteristic0.We oftenassumeF =Q.As insec- tion2,givenn∈{1,...,8}wecanassociatetoamatrixA∈Mat (3,n)whichhas k maximalrank,withkernelG,thevarietyX .ThevarietyX istheblow-upofP2at G G thepointsrepresentedbyA.Proposition2.2givesusthefollowingidentity Cox(X )≃k[x ,...,x ,y ,...,y ]G=:RG. G 1 n 1 n 10 MarthaBernal,DanielCorey,MariaDonten-Bury,NaokiFujita,andGeorgMerz Byvaryingthevariablet wecaninterpretX asafamilyofdelPezzosurfacesover G F and Cox(X ) as the correspondingfamily of Cox rings. Note however that the G onlypropertywe areusingin thissectionaboutthe varietyX isthatitsCoxring G R isasubalgebraofapolynomialringk[x ,...,x ]. G 1 r Letk◦bethecorrespondingvaluationringofk,i.e.thesetofallelementshaving nonnegativevaluation. Theorem3.3.LetR⊂k[x ,...,x ]beanalgebra.AfiniteKhovanskiibasisF ofR 1 n inducesatoricdegenerationofSpec(R). Proof. LetF beafiniteKhovanskiibasis.Letusdenotefor f ∈F bytrop(f)(1) theminimumofthevaluationofthecoefficientsof f.Considerthek◦-algebra RG :={ttrop(f)(1)f | f ∈RG}⊂k◦[x ,...,x ]. k◦ 1 n WeclaimthatSpec(RG)→Spec(k◦)isatoricdegenerationofSpec(RG). k◦ ItisaflatmorphismsinceRG isatorsionfreemoduleoverthediscretevaluation k◦ ringk◦.Now,thegeneralfiberisgivenby Spec(RGk◦⊗k◦k)∼=Spec(RG), andthespecialfiberis Spec(RGk◦⊗k◦k◦/(t))∼=Spec(in(RG)). The last thing to prove is that the algebra in(RG) is an affine semigroup algebra. k◦ Butthisfollowseasilyfromthefactthatitisafinitelygeneratedalgebragenerated bymonomials. ⊓⊔ AsaconsequenceoftheabovetheoremweconcludethatafiniteKhovanskiibasis F ofRGinducesatoricdegenerationofSpec(RG).Nowwewanttoshowhowthis toricdegenerationgivesatoricdegenerationofX withrespecttoanyembedding. G Forthispurposethefollowinglemmaishelpful. Lemma3.4.LetF beafiniteKhovanskiibasisofRG. LetLbea very ampleline bundleonX andT := T := H0(X,L⊗q)⊂RGbeitsgradedsectionring. G q q∈N0 Thenin(T)isfinitelygeLnerated.L Proof. Let f ,...,f ∈RGbehomogenouselementswhichformaKhovanskiibasis 1 w ofRG.Foreachb ∈Nw0 considerthesetofallpolynomials fb :=(cid:213) wi=1 fibi suchthat thereisanon-negativeinteger p∈Nforwhichwehave w (cid:229) b ·deg(f)=p·deg(L). (4) i i i=1 By a slight abuse of notation,we use deg forthe functionwhich assigns to a sec- tionaswellastoadivisorthecorrespondingintegervectorundertheisomorphism

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.