ebook img

Joint localization and clock synchronization for wireless sensor networks PDF

0.14 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Joint localization and clock synchronization for wireless sensor networks

JOINTLOCALIZATION ANDCLOCKSYNCHRONIZATIONFOR WIRELESS SENSOR NETWORKS Sundeep PrabhakarChepuri,Geert Leus, andAlle-Janvan der Veen Faculty ofElectrical Engineering,MathematicsandComputerScience DelftUniversityofTechnology,2628CD Delft, TheNetherlands E-mail: [email protected],[email protected],[email protected]. 3 1 0 ABSTRACT metricaltime-stampingandpassivelistening(ATPL)protocol 2 wasproposedin[5]forjointclocksynchronizationandrang- A fully-asynchronousnetwork with one target sensor and a n ing. Subsequently, the estimated pairwise distances can be fewanchors(nodeswithknownlocations)isconsidered.Lo- a usedasaninputtotheleast-squares(LS)basedrange-squared J calizationandsynchronizationaretraditionallytreatedastwo separate problems. In this paper, localization and synchro- methodforlocalization. Jointestimationofthepositionand 4 theclockparametersofasensorbasedonthetwo-waytime- nization is studied under a unified framework. We present stamp exchange protocol has been considered in [6], where ] a new model in which time-stamps obtained either via two- T ansynchronousnetworkisconsideredwhereonlythesensor way communication between the nodes or with a broadcast I nodesuffersfromclock-skewsandclock-offsetsandthe an- . based protocol can be used in a simple estimator based on s chors are assumed to be synchronized. In [7], localization c least-squares(LS) to jointly estimate the position of the tar- [ getnode as well as all the unknownclock-skewsand clock- ofthesensornodeinafully-asynchronousnetworkhasbeen offsets. TheCrame´r-Raolowerbound(CRLB)isderivedfor studied,wherethemainfocusisonlocalizationbutalsocer- 1 tain approximations of the clock parameters are required to v theconsideredproblemandisusedasabenchmarktoanalyze solvetheproblem. 2 theperformanceoftheproposedestimator. 0 In this paper, we again consider fully-asynchronousnet- 7 IndexTerms— Clocksynchronization,clock-skew,clock- workconsistingofonesensoranda fewanchors,andinves- 0 offset,localization,wirelesssensornetworks. tigatelocalizationandclocksynchronizationundera unified . 1 framework.Weproposealineardatamodelforjointlocaliza- 0 1. INTRODUCTION tionandclocksynchronization. Thedatamodelisgenericin 3 thesensethatitcanbeusedwitheitherthetwo-wayranging 1 Localization and clock synchronizationare two key compo- protocol or the ATPL protocol. This is used in an estima- : v nents of any self-organizing location-aware wireless sensor torbasedonLStojointlyestimatethepositionofthesensor Xi network(WSN).AWSNenablesdistributedinformationpro- nodeandalltheunknownclock-skewsandclock-offsets.The cessingtaskslikedatasampling,informationfusion,andother Crame´r-RaoLowerBound(CRLB)isderivedfortheconsid- r a time-based tasks [1]. Every node in the network has an au- eredproblemandisusedasabenchmarktoanalyzetheper- tonomousclock.TheseindividualclocksinaWSNdriftfrom formanceoftheproposedestimators. each other due to imperfections in the oscillator, aging and Notation: otherenvironmentalvariations.Itisessentialtocalibratethese Upper(lower)boldfacelettersareusedformatrices(column imperfections from time to time to achieve a network-wide vectors);(·)T denotestransposition;⊙(⊘)referstoelement- timecoherence. Aplethoraofalgorithmsforclocksynchro- wise matrix or vector product (division); (.)⊙2 denotes the nization can be found in [2]. For the data to be meaning- element-wisematrixorvectorsquaring;bdiag(.)ablockdi- ful,thelocationwherethedataisacquiredisoftenrequired. agonalmatrixwith the matricesin its argumenton the main Computingthelocationofthenodesis commonlycalledlo- diagonal;1 (0 )denotestheN ×1vectorofones(zeros); N N calization,andisawell-studiedtopic[3]. I isanidentitymatrixofsizeN;E(.)denotestheexpecta- N Even though localization and clock synchronization are tionoperation;⊗istheKroneckerproduct. tightly coupled, traditionally they are treated as two sepa- rate problems. Recently, foran anchorlessand a fullyasyn- chronousnetwork,agloballeast-squares(GLS)estimatorbased 2. NETWORKMODEL on a two-way time-stamp exchange protocol for joint clock synchronization and ranging has been proposed in [4]. Ex- We consider a fully-asynchronousnetwork with M anchors ploitingthebroadcastnatureofthewirelessmedium,anasym- andonesensor(node0)asshowninFig.1. We assumeone θ∈R11×1 A∈R3K×11 n∈R9×1 c z }|0 { z t01 1K −t10 −1K 0K 0}|K 0K 0K e10 0K 0K { c1 zn}0|1{ (5)  t02 1K 0K 0K −t20 −1K 0K 0K 0K e02 0K  c2 = n02 .  t03 1K 0K 0K 0K 0K −t30 −1K 0K 0K e03  c3 n03 τ0 A∈R3K×9 θ∈R9×1 t∈R3K×1 n∈R9×1 c z ttt000321 111KKK −00tKK10 −001KKK −0}0t|KK20 −001KKK e001KK0 e000KK2 e000KK3 { zτcc}012|0{ =−z −00tKK30 }−|001KKK c3{ + znnn}000|123{ . (6) nodeM 3. PROBLEMFORMULATION node3 (cM=[1,0]T,xM) (c3?,x3) Inthispaper,wefocusonthetwo-waycommunicationproto- Sensor node2 colforderivingthedatamodel. Thetransmissionandrecep- Anchor tiontime-stampsarerecordedindependentlyatlocaltimeco- (c2?,x2) ordinatesbothduringtheforwardandthereverselinks. The (c0n?,oxd0e?0) time-stamp recorded at the ith node when the kth iteration (c1?,x1n)ode1 messagedepartstothejthnodeisdenotedbyTi(jk),andupon arrivalofthecorrespondingmessage,thejthnoderecordsthe Fig. 1: An illustration of the network model, together with time-stampT(k).Forthesakeofgenerality,wedonotputany theknowandunknownparameters. Lightshadedlinesrefer ji constraintsonthesequenceofforwardlinksandreverselinks tothepassivelisteninglinks. orthenumberoftime-stampsrecorded[4,5]. The time-of-flightfor a line-of-sight(LOS) transmission ofthenodeshasarelativelystableclockoscillatorandisused betweentheithnodeandthejthnodecanbedefinedasτ = as a clock reference. All the other nodessuffer from clock- ij ν−1d , where ν denotes the speed of a wave in a medium. skewsandclock-offsets.Thenetworkmodelconsideredhere ij Using(2),τ canbewrittenintermsofthelocalclockcoor- isthesameasthemodelconsideredin[5]. ij dinatesas Allthenodesaredistributedoveranl-dimensionalspace, with l = 2 (plane) or l = 3 (3-D space). Let the vector τ =(α T(k)+β )−(α T(k)+β )+n(k) (4) x ∈ Rl×1 denote the coordinatesof the ith node. The co- ij j ji j i ij i ij i ordinates of all the anchors are collected in a matrix X = [x ,x ,...,x ] ∈ Rl×M. Theunknowncoordinatesofthe where n(ijk) denotes the aggregate measurementerror on the 1 2 M time-stamps. sensorarecollectedinx . Thedistancebetweentheithnode 0 InallthereareK time-stampsrecordedateachnodeand andthejthnodeisdenotedby thetime-stampsrecordedattheithnodearecollectedint = ij dij =dji =kxi−xjk2 = kxik2−2xTi xj +kxjk2 [Ti(j1),Ti(j2),...,Ti(jK)]T ∈ RK×1. Thedirection(forwardor q (1) reverse)ofthekthlinkisdenotedbye(k),wheree(k) =1for ij ij Letti bethelocaltimeattheithnodeandtbetherefer- transmissionfromnodeitonodej ande(k) = −1fortrans- encetime.Wethenassumethattherelationbetweenthelocal ij missionfromnodej to nodei. The directioninformationis timeandthereferencetimecanbegivenbyafirst-orderaffine collected in a vector e = [e(1),e(2),...,e(K)]T ∈ RK×1. clockmodel[4], ij ij ij ij Theerrorvectorisdenotedbyn =[n(1),n(2),...,n(K)]T ∈ ij ij ij ij ti =ωit+φi ⇔ t=αiti+βi (2) RK×1. whereω ∈R istheclock-skew,φ ∈Ristheclock-offset, Forthesakeofexposition,weconsidertheexampleofa i + i α =ω−1andβ =−ω−1φ arethesynchronizationparame- networkwith M = 3 anchorsand one sensor (node0) with i i i i i a of two-way communication protocol between each of the tersoftheithnode.Withoutlossofgenerality,weuseanchor sensor-anchorpairs. Lettheclockparameterscorresponding M as absolute time reference, i.e., [ω ,φ ] = [1,0]. The M M unknown synchronization parameters are collected in α = to the ith node be collected in a vector ci = [αi,βi] and [α0,α1,...,αM−1]T andβ =[β0,β1,...,βM−1]T.Theun- τ0 = [τ0,1,τ0,2,...,τ0,M]T ∈ RM×1. The pairwise dis- known clock-skews and clock-offsets are respectively given tances of the sensor to each anchor will be d0 = ντ0. We by can now write (4) for all the K time-stamps collected in a ω =1 ⊘α and φ=−β⊘α. (3) matrix-vector form shown in (5) on top of this page. Mov- M ingtheknowncolumnscorrespondingtoc = [1,0]T (clock Nodes in the network can communicate with each other 3 reference) to one side, we can re-write (5) shown in (6) on eitherviaatwo-waycommunicationprotocol[4]oranATPL topofthispage. Thegeneralizationof(6)foranyM > 2is protocol[5]asillustratedinFig.1. straightforward. usingLSasfollows IncaseweadoptthebroadcastbasedATPLprotocol,the matrixAwillhaveadditionalrowscorrespondingtothepas- pˆ =(X¯TX¯)−1X¯T(dˆ ⊙dˆ −q) (10) 0 0 sive listening links [5]. The detailed derivationof the linear provided M ≥ l + 1 such that the matrix X¯ is tall. The datamodelfortheATPLprotocolcanbefoundin[5]. anchor positions can be designed such that the matrix X¯ is Thegeneralizedlinearmodelforeitherthetwo-waycom- left-invertible. municationorATPLprotocolcanbewrittenas 5. THEJOINTESTIMATOR Aθ =t+n (7) whereA ∈ RKM×3M, θ ∈ R3M×1, t ∈ RKM×1, andn ∈ Althoughclocksynchronizationandlocalizationproblemsare RKM×1 with the structures detailed in (6) for the two-way tightlycoupled,theyhaveanon-linearrelationascanbeseen communicationprotocolorin[5]fortheATPLprotocol. in(9).Incasewewanttolocalizethesensorandalsoestimate The aim of this work is to estimate the position x of alltheunknownclockparametersinonelinearstep,wehave 0 thetargetnodealongwithalltheunknownclockparameters. tolinearizetherelationbetweentheclockparametersandthe Thepositionofthetargetnodex canbecomputedusingthe position. 0 rangeestimatesobtainedbysolving(7). Thisispresentedas In orderto do such a jointlocalization and synchroniza- atwo-stepapproachinthenextsection,whereinthefirststep tion,weexploitthelinearrelationbetweentherange-squared we estimate the unknownclockparametersandthe pairwise measurements and the coordinates of the sensor. Instead of distancesofthesensortoeachanchor,andusethisestimated squaringthe estimated pairwise distancesin the second step pairwisedistancestocomputethepositionofthetargetnode as in Section 4.2, we linearize the problem by squaring the in the second step. Alternatively, we can formulate a single linear modelin (7), and this is the main contributionof this estimationproblemtojointlycomputethepositionofthetar- paper.Aunifiedframeworkforlocalizationandsynchroniza- getnodeaswellasalltheunknownclockparametersandthis tionisessentialforapplicationsinWSNssuchasjointtrack- isthemaincontributionofthispaper. ingofthepositionandtheclock-parameters,fore.g.,usinga standardKalmanfilter. 4. TWO-STEPAPPROACH Hadamardsquaringthedatamodelin(7)wouldresultin alinearmodelandisgivenby In the two-step approach,we first solve for all the unknown clockparametersand the pairwise distancesof the sensor to (Aθ)⊙(Aθ)=(t+n)⊙(t+n) (11) eachanchorandthenusetherangeestimatesinaLSestimator andcanbefurthersimplifiedto tocomputethelocation. 4.1. Jointsynchronizationandranging:stepI (AT ◦AT)T(θ⊗θ)=(t+n)⊙(t+n) (12) For K ≥ 3, matrix A is tall and left-invertible. Hence, the The linear modelin (12) doesnot have a uniquesolution as unknownparametersinθcanbeestimatedusingLS,i.e., thesystemmatrix(AT◦AT)T isaKM×9M2matrixwhich θˆ =(ATA)−1ATt. (8) isgenerallyfatandthusnotleft-invertible.However,thiscan besolvedwithcertainapproximationsoftheclockparameters Subsequently,theclock-skewsω,clock-offsetsφcanbeob- asin[7]. tainedusingtherelationin(3),andthepairwisedistancesof An alternative approach to linearizing the problem is by thesensortoeachanchorusingtherelationdˆ =ντˆ . 0 0 takingtheKroneckorproductofthemeasurements,i.e., 4.2. Localizationfromestimatedpairwisedistances:stepII (Aθ)⊗(Aθ)=(t+n)⊗(t+n). (13) Pairwisedistancesformamajorinputtoanylocalizationscheme. Usingthepairwisedistanceestimatesobtainedin(8),theco- UsingthematrixpropertyPC⊗QE = (P⊗Q)(C⊗E), ordinates of the sensor node can be estimated using range- wecanfurthersimplify(13)tothefollowinglinearmodel squaredlocalizationalgorithms. Letusdefineavectorq=[kx1k2,kx2k2,...,kxMk2]T ∈ A¯ θ¯ RM×1. Using (1), we can writethe pairwise distanceof the (A⊗A)(θ⊗θ)=(t+n)⊗(t+n) sensortoeachanchorinavectorformas z }| {z }| { (14) ¯t w d0⊙d0 =q−2XTx0+kx0k21M =t⊗t+n⊗n+t⊗n+n⊗t (9) =X¯p+q, z}|{ z }| { whereA¯ ∈ RK2M2×9M2,andw ∈ RK2M2×1 isthenewer- wherep=[xT,kx k2]T andX¯ =[−2XT,1 ]∈RM×(l+1). rorvector.IfthematrixAisfullcolumn-rank,thenitfollows 0 0 M Subsequently,thecoordinatesofthesensorcanbeestimated thatthematrixA¯ isalsofullcolumn-rank. Wenowintroducetwonewvariablestoresolvetheclock unbiasedestimatorϕˆ¯ itfollowsfromtheCRLBtheoremthat parameters without ambiguity after the squaring operation. E(ψˆ¯ψˆ¯T) ≥ F−1 where F is the Fisher informationmatrix. Fortheithnode,wedefinethevariables If the error vector n is Gaussian distributed with a variance σ2,thenFcanbecomputedasF=σ−2JTJ,whereJisthe γ ,α2 and δ ,α β , (15) i i i i i Jacobianmatrixgivenby and collect parameters corresponding to the ith node in the ∂(Aθ−t) vector ¯ci = [γi,δi]T. The clock-skew ωi ∈ R+ is always J= ∂ϕ¯ =[Jω Jφ Jx0]∈RKM×(2M+l) positiveandtheclock-offsetφ ∈ Rcanbeeitherpositiveor i (21) negative. Asaresult,recoveringclock-offsetsfromβ2 with- i withsub-blocks outambiguitieswouldbedifficult.Hence,wemakeuseofthe cross-termδi = αiβi torecovertheclock-offset. Forallthe Jω =−A(Sα−Sβ⊙1KMφT)⊘(1KMωT)⊙2, nodesinthenetworkwehave¯c=[¯cT0,¯cT1,¯cT2,...,¯cTM−1]T. Jφ =−ASβ⊘1KMωT, (22) Ltheeteunstdrieefisnoefaθ¯p,esrumchuttahtaiotnΠmθ¯at=rix[¯cΠT,∈τ⊙R29TM,2z×T9]MT.2Htheartes,otrhtes Jx0 =ν−1TSτ0D, 0 seinsttrioefstohfethneuivseacntcoerpza∈ramReLtze×rs1ewxictlhuLdizng=c¯9aMnd2τ−⊙32Mfr,ocmonθ¯- wcohleurmenSsαo,fSAβ,caonrrdesSpτo0ndairnegsteoleαct,ioβn,manadtriτces, rtoesspeelcetcivtetlhye. 0 0 andisoflessinterest. TheM ×lderivativematrixDisdefinedas Wecannowre-write(14)asfollows A¯ΠT(S¯cc¯+ν−2Sdd⊙02+Szz)=¯t+w (16) [D]i,j =(cid:20)∂∂dx00(cid:21)i,j = [kxx0]0j−−x[xiki2]j (23) where S¯c, Sd, and S¯z are the selection matrices to select columns of A¯ΠT corresponding to c¯, d⊙2, and z, respec- 7. NUMERICALEXAMPLE 0 tively.Substituting(9)in(16),weget Anetworkwithonetargetsensorand5anchorsisconsidered. A¯ΠT(S¯c¯c+ν−2SdX¯ap+Szz)=¯t−A¯ΠTν−2Sdq+w. Boththetargetnodeandanchornodesaredeployedrandomly (17) withinarangeof100m.Theclock-skewsωandclock-offsets Wenextcollecttheunknownsinthevectorψ =[¯cT,pT,zT]T φ are uniformly distributed in the range [1 −100ppm,1+ ∈ RL×1 whereL = 2M +l+1+Lz andthecolumnscor- 100ppm] and[−1s,1s],respectively. We use anobservation respondingtotheunknownsinthematrix interval of 100s during which the clock parameters are as- A˜ =[A¯ΠTS¯c,ν−2A¯ΠTSdX¯,A¯ΠTSz]∈RK2M2×L, stiummee-dstatombpes.fiTxheed.erWroeruvseectνor=is3a0s0summ/esdatnodbreeGcoarudssKian=d1is0- (18) andthemeasurementsinthevector˜t=¯t−ν−2A¯ΠTSdq∈ tributed with a variance σ2. The simulations are averaged RK2M2×1. over1000independentMonteCarloexperiments. The generalized linear model for joint localization and synchronizationisthengivenby 100 2−step (two−way) A˜ψ =˜t+w (19) Joint estimator (two−way) RCRB (two−way) 2−step (ATPL) TheunknownparametersinϕcanbeestimatedusingLS,i.e., 10−1 JRoCinRt LeBs t(imATaPtoLr) (ATPL) m] ψˆ =(A˜TA˜)−1A˜T˜t. (20) E ( x) [0 S M Hence, theunknownpositionx is obtainedbysolving(20) R 0 10−2 and the unknown clock-skews and clock-offsets can be ob- tainedusing(15)and(3)withoutanyambiguities. Alternatively, a weighted least-squares (WLS) estimator insteadof(10)takingtheestimationerrorin(8)oraWLSes- 10−130 −6 10−7 10−8 10−9 σ2 [s] timatorinsteadof(20)pre-whiteningthenoisewispossible. However,thisisnotfurtherdetailedinthispaper. Fig.2:RMSEoftheestimatedsensorcoordinates. 6. CRAME´R-RAOLOWERBOUND Inthispaper,weanalyzetheperformanceoftheproposed estimatorsintermsoftherootmeansquareerror(RMSE)of We now derive the CRLB for jointly estimating the clock- theestimatedsensorposition,clock-skews,andclock-offsets skewsω,theclock-offsetsφ,andthecoordinatesofthesen- fordifferentvaluesofσ2. We providetheresultsfora)two- sor node x , i.e., ψ¯ = [ωT,φT,xT]T based on (7). For an waycommunicationprotocol[4]b)ATPLprotocol[5]. 0 0 10−4 parametersandthepositionwhichisanimportantapplication inaWSN. 10−5 8. CONCLUSIONS ω ) 2−step (two−way) E ( joint estimator (two−way) We have considered a fully-asynchronousnetwork with one S RCRB (two−way) M R 2−step (ATPL) sensor and a few anchors. In this paper, we have addressed 10−6 joint estimator (ATPL) RCRLB (ATPL) a problem in which we estimate all the unknown clock pa- rameters as well as the position of the target node. Loca- tion of the node can be estimated with a two-step approach 10−170 −6 10−7 10−8 10−9 using the range estimates. To avoid this two-step approach, σ2 [s] we have proposed a generic linear data model for joint lo- calizationandclocksynchronization. Anestimatorbasedon Fig.3:RMSEoftheestimatedclock-skews. LSto jointly estimate the positionofthe targetsensor node, alongwithalltheunknownclock-skewsandclock-offsetshas 10−2 beenpresented. Theproposedestimatorforclock-skewsand 2−step (two−way) joint estimator (two−way) clock-offsetsisasymptoticallyefficientandmeetstheCRLB, RCRB (two−way) 2−step (ATPL) however,thepositionestimatesdonotasymptoticallyachieve 10−3 jRoCinRt eLsBt i(mAaTtPorL )(ATPL) theCRLB. φE ( ) [s]10−4 9. REFERENCES S M R [1] N.M. Freris, H. Kowshik, and P. R. Kumar, “Funda- 10−5 mentalsoflargesensornetworks:Connectivity,capacity, clocks,andcomputation,” Proc.oftheIEEE,vol.98,no. 101−60 −6 10−7 10−8 10−9 11,pp.1828–1846,nov.2010. σ2 [s] [2] Yik-ChungWu, Q. Chaudhari,andE.Serpedin, “Clock Fig.4: RMSEoftheestimatedclock-offsets. synchronizationofwirelesssensornetworks,” IEEESig- nalProcess.Mag.,vol.28,no.1,pp.124–138,jan.2011. Fig. 2showstheRMSE oftheestimatedsensorposition [3] F. Gustafsson and F. Gunnarsson, “Mobile positioning computedusing a) the two-step approach, i.e., LS estimator using wireless networks: possibilities and fundamental (10) with the range estimates of (8) as the input, and b) the limitationsbasedonavailablewirelessnetworkmeasure- proposed joint estimator. The root CRLB (RCRLB) is also ments,” IEEESignalProcess.Mag.,vol.22,no.4,pp.41 providedfor both the considered protocols. The ATPL pro- –53,july2005. tocol performsbetter than the two-way communicationpro- [4] R. T. Rajan and A.-J. van der Veen, “Joint rangingand tocoldue to the additionalpassive listening links [5]. How- clock synchronizationfor a wireless network,” in Proc. ever,boththeestimatorsforlocalizationareinaccurateasthe 4thIEEEInternationalWorkshoponComputationalAd- dependencies with the nuisance parameters are not consid- vancesinMulti-SensorAdaptiveProcessing(CAMSAP), ered,andthiscanberesolvedusingaconstrainedWLSsolu- dec.2011,pp.297–300. tions[7]. Fig. 3andFig. 4showtheRMSEoftheestimatedclock- [5] S.P.Chepuri,R.Rajan,G.Leus,andA.-J.vanderVeen, skewsandclock-offsets. TheATPLprotocolagainperforms “Jointclocksynchronizationandranging: Asymmetrical better than the two-way communication protocol. In addi- time-stampingand passivelistening,” IEEESignalPro- tion,boththeestimatorsforclock-skewsandclock-offsetsare cess.Lett.,vol.20,no.1,jan2013. asymptoticallyefficient,andmeettheCRLB. [6] JunZhengandYik-ChungWu, “Jointtimesynchroniza- Thelocationofthetargetnodecanbeobtainedwithatwo- tionandlocalizationofanunknownnodeinwirelesssen- step approachusing the range estimates obtained from joint sornetworks,” IEEETrans.SignalProcess.,vol.58,no. synchronizationandranging.Alternatively,wecanformulate 3,pp.1309–1320,march2010. localization and synchronization under a unified framework as a single linear problem. However, this results in a larger [7] YiyinWang,XiaoliMa,andG.Leus,“Robusttime-based systemtosolveandiscomputationallylessattractivethanthe localization for asynchronous networks,” IEEE Trans. two-stepapproach.Thelinearmodelofthejointsynchroniza- Signal Process., vol. 59, no. 9, pp. 4397 –4410, sept. tionandlocalizationcanbeusedforjointtrackingoftheclock 2011.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.