ebook img

JEE Mains Paper With Solutions PDF

40 Pages·2017·1.74 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview JEE Mains Paper With Solutions

Pioneer Education The Best Way To Success NTSE | Olympiad | AIPMT | JEE - Mains & Advanced JEE Mains Paper With Solutions PART A – MATHEMATICS Straight Objective Type This section contains 30 multiple choice questions. Each question has 4 choices (a), (b), (c) and (d) for its answer, out of which Only One is correct. 1. It S is the set of distinct values of ‘b’ for which the following system of linear equations x + y + z = 1 x + ay + z = 1 ax + by + z = 0 has no solution, then S is: (a) an empty set (b) an infinite set (c) a finite set containing two or more elements (d) a singleton Ans. (d) Solution: 1 1 1 D = 1 a 1  a12 0  a = 1 a b 1 For a = 1 we have first two planes co-incident x + y + z = 1 ax + by + z = 0 For no solution these two are parallel 1 1 1   a 1,b1 a b 1 2. The following statement pq  [~p q q] is: (a) a tautology (b) equivalent to ~p q (c) equivalent to p ~q (d) a fallacy Ans. (a) Solution: pq[~pqq] pqpqq pq~p~qq pq~p q(~qq) (p q) pqwhich is tautology Pioneer Education| SCO 320, Sector 40–D, Chandigarh +91-9815527721, 0172-4617721 Page 1 of 40 www.pioneermathematics.com Pioneer Education The Best Way To Success NTSE | Olympiad | AIPMT | JEE - Mains & Advanced 3. If 5(tan2 x – cos2x) = 2 cos 2x + 9, then the value of cos4x is: 3 1 2 7 (a) (b) (c) (d)  5 3 9 9 Ans. (d) Solution: 5(tan2x – cos2x) = 2cos 2x + 9  1  1t2  5t2 2 9  1t2  1t2  5(t4 + t2 – 1) = 2 – 2t2 + 9 + 9t2 5t4 – 2t2 – 16 =0 5t4 – 10t2+ 8t2 – 16 = 0 5t2(t2 – 2) + 8(t2 – 2) =0 (5t2 + 8) (t2 – 2) = 0 tan2x = 2 12 1 cos 2x =  12 3 7 cos 4x = 2 cos2 2x – 1 = – 9 4. For three events A, B and C, P (Exactly one of A or B occurs) = P(Exactly one of B or C occurs) 1 1 = P(Exactly one of C or A occurs) = and P(All the three events occurs simultaneously) = . 4 16 Then the probability that at least one of the events occurs, is: 7 7 7 3 (a) (b) (c) (d) 32 16 64 16 Ans. (b) Solution: 1 P(A) + P(B) – 2PAB 4 1 PBPC2PBC 4 1 PAPC2PAC 4 1 PABC 16 3 1 61 7 P(A) + P(B) + P(C) –P(A  B) – P(B  C) –P(A C) + P(A  B  C) =    8 16 16 16 1 1 1 5. Let be a complex number such that 21z where z  3 . If 1 21 2 3k, then k is 1 2 7 equal to: (a) – z (b) z (c) – 1 (d) 1 Ans. (a) Solution: Pioneer Education| SCO 320, Sector 40–D, Chandigarh +91-9815527721, 0172-4617721 Page 2 of 40 www.pioneermathematics.com Pioneer Education The Best Way To Success NTSE | Olympiad | AIPMT | JEE - Mains & Advanced z i 3  21 3 i 2 3i1 1i 3   12 0 & 3 1 2 1 1 1 3 1 1  1  2 3k  0  2 3k 1 2  0 2  3243k 1i 3 1i 3 i 3 i 3 k2      3 z 2 2 2 2 6. Let k be an integer such that triangle with vertices (k, – 3k), (5, k) and (–k, 2) has area 28 sq. units. Then the orthocentre of this triangle is at the point:  1  3  3  1 (a) 2, (b) 1, (c) 1, (d) 2,          2  4  4  2 Ans. (d) Solution: k 3k 1 5 k 1  56 k 2 1 k(k – 2) – 5(–3k – 2) – k(–3k – k) =  56 k2 – 2k + 15k + 10+ 3k2 + k2 =  56 5k2 + 13k + 10  56 = 0 5k2 + 13k + 66 = 9 or 5k2 + 13k – 46 = 0 13 169920 No solution or k 10 1333 46 k   k2 or k (which is not an integer) 10 10  vertices A(2, – 6), B(5, 2), C(–2, 2) Equation of altitude from vertex A is x = 2 …(i) Equation of altitude dropped from vertex C is 3x+ 8y – 10 = 0 …(ii) solving both (i) and (ii)  1 orthocentre 2,    2 7. Twenty meters of wire is available for fencing off a flower-bed in the form of a circular sector. Then the maximum area (in sq. m) of the flower-bed, is: (a) 12.5 (b) 10 (c) 25 (d) 30 Ans. (c) Solution: Pioneer Education| SCO 320, Sector 40–D, Chandigarh +91-9815527721, 0172-4617721 Page 3 of 40 www.pioneermathematics.com Pioneer Education The Best Way To Success NTSE | Olympiad | AIPMT | JEE - Mains & Advanced 202r 2r 20  2rr 20   r r2 r2 202r A   . r10r 360 2 r A = 10r – r2 dA 102r0 r5 dr 10   2 15 1  Maximum area = 25225sq.m. 2 8. The area (in sq. units) of the region {(x, y): x  0, x + y  3, x2  4y and y 1 x } is: 59 3 7 5 (a) (b) (c) (d) 12 2 3 2 Ans. (d) Solution: y1 x y12 x Required area = 11 xdx  23xdx  2x2dx 0 1 0 4 1 2 2  2x3/2   x2   x3  2  5 8 = x  3x     1 62   3   7  12 3  2 12 0 1 0 2  5 2 3 5 = 1  4  1    3  2 3 2 2 9. If the image of the point P(1, –2, 3) in the plane, 2x + 3y – 4z + 22 = 0 measured parallel to the line, x y z   is Q, then PQ is equal to: 1 4 5 (a) 3 5 (b) 2 42 (c) 42 (d) 6 5 Ans. (b) Solution: Let R be the point of intersection of plane and line passing through P and parallel to given line. Pioneer Education| SCO 320, Sector 40–D, Chandigarh +91-9815527721, 0172-4617721 Page 4 of 40 www.pioneermathematics.com Pioneer Education The Best Way To Success NTSE | Olympiad | AIPMT | JEE - Mains & Advanced So, R is 1,24,35 substituting co-ordinates of R in plane 226 121220220  6 6  1 So, R is (2, 2, 8) Hence PR  11625  42 So, PQ = 2 42  1  6x x  10. If for x0,4, the derivative of tan119x3 is x.gx,then g(x) equals: 9 3x x 3x 3x (a) (b) (c) (d) 19x3 19x3 19x3 19x3 Ans. (a) Solution:   3x x 3x x    Let ytan1 2tan1 3x x   2   1 3x x    dy 1 3  9  9 2 3  x  x gx   dx 19x3 2 19x3  19x3 dy  11. If 2sinx + (y + 1) cos x = 0 and y(0) = 1, then y is equal to:   dx 2 1 2 1 4 (a) (b)  (c)  (d) 3 3 3 3 Ans. (a) Solution: dy y1cosx  dx 2sin x dy cosx    dx y1 2sin x ny1 n2sinxc (y + 1) (2 + sin x) = A; for x= 0, y = 1  A = 4  (y +1) (2 + sin x) = 4  1 for x  y 2 3 12. Let a vertical tower AB have its end A on the level ground. Let C be the mid-point of AB and P be a point on the ground such that AP = 2AB. If BPC,then tan is equal to 6 1 2 4 (a) (b) (c) (d) 7 4 9 9 Ans. (c) Pioneer Education| SCO 320, Sector 40–D, Chandigarh +91-9815527721, 0172-4617721 Page 5 of 40 www.pioneermathematics.com Pioneer Education The Best Way To Success NTSE | Olympiad | AIPMT | JEE - Mains & Advanced Solution: 1 1 tan , tan  ,tany 2 4 tantan tan 1tan tan 1 y 1 1 14y 4    2 y 2 4y 1 4 4 – y = 2 + 8y 2 y 9  2 3 13. If A = , then adj (3A2 + 12A) is equal to   4 1   72 84 51 63 51 84  72 63 (a) (b) (c) (d)         63 51  84 72 63 72 84 51  Ans. (b) Solution:  2 3 A    4 1  A2 – 3A – 10I = 0 A2 = 3A + 10I 3A2 + 12A = 3(3A + 10I) + 12A = 21A + 30I  42 63 30 0   72 63 21A  30I          84 21   0 30 84 51  51 63 adj 21A  30I    84 72 14. For any three positive real numbers a, b and c, 9(25a2 + b2) + 25(c2 – 3ac) = 15b(3a + c), Then (a) b, c and a are in G.P. (b) b, c and a are in A.P. (c) a, b and c are in A.P. (d) a, b and c are in G.P. Ans. (b) Pioneer Education| SCO 320, Sector 40–D, Chandigarh +91-9815527721, 0172-4617721 Page 6 of 40 www.pioneermathematics.com Pioneer Education The Best Way To Success NTSE | Olympiad | AIPMT | JEE - Mains & Advanced Solution: 225a2 + 9b2 + 25c2 – 75ac – 45ab – 15bc = 0 (15a)2 + (3b)2 + (5c)2 – (15a) (3b)– (3b) (5c) – (15a) (5c) = 0 1 [(15a – 3b)2 + (3b – 5c)2 + (5c – 15a)]2 = 0 2 15a = 3b, 3b = 5c, 5c = 15a 5a = b, 3b = 5c, c = 3a a b c    1 5 3 a = ,b5,c3 a,c,bare inA.P or b, c, a are in A.P 15. The distance of the point (1, 3, – 7) from the plane passing through the point (1, –1, –1), having normal x1 y2 z4 x2 y1 z7 perpendicular to both the lines   and   , is 1 2 3 2 1 1 20 10 5 10 (a) (b) (c) (d) 74 83 83 74 Ans. (b) Solution: Let the plane be a(x – 1) + b(y + 1) + c(z + 1)= 0 a – 2b + 3c = 0 2a – b – c = 0 a b c   5 7 3 5(x – 1) + 7(y + 1) + 3(z + 1) = 0 5x + 7y + 3z + 5 = 0 P(1, 3, – 7) 521215 10 d  25499 83 16. Let I  tannxdx, n 1. If I I a tan5xbx5C,where C is a constant of integration, then the n 4 6 ordered pair (a, b) is equal to  1  1  1   1  (a)  ,1 (b) ,0 (c) ,1 (d)  ,0          5  5  5   5  Ans. (b) Solution: I  tannxdx  tann2(sec2x1)dx n (tanx)n1 (tan x)n2sec2xdx(tan x)n2dx I n1 n2 (tan x)n1 I I  n n2 n1 put n = 6 Pioneer Education| SCO 320, Sector 40–D, Chandigarh +91-9815527721, 0172-4617721 Page 7 of 40 www.pioneermathematics.com Pioneer Education The Best Way To Success NTSE | Olympiad | AIPMT | JEE - Mains & Advanced 1 1 I I  tan5xatan5xbx5c  a b0 c0 4 6 5 5 1   a,b ,0   5  1 17. The eccentricity of an ellipse whose centre is at the origin is . If one of its directrices is x = - 4, then 2  3 the equation of the normal to it at 1, is    2 (a) 2y – x = 2 (b) 4x – 2y = 1 (c) 4x + 2y – 7 (d) x + 2y = 4 Ans. (b) Solution: a 4 e a = 4e = 2 b2 e2 = 1 – a2 1 4b2  4 4 b 3 x2 y2  1 4 3 3 equation of normal at (1, ) 2 a2x b2y  a2b2 x y 1 1 4x 3y  43 1 3/2 4x – 2y = 1 18. A hyperbola passes through the point P( 2, 3)and has foci at 2,0.Then the tangent to this hyperbola at P also passes through the point: (a) (3 2,2 3) (b) (2 2,3 3) (c) ( 3, 2) (d) ( 2, 3) Ans. (b) Pioneer Education| SCO 320, Sector 40–D, Chandigarh +91-9815527721, 0172-4617721 Page 8 of 40 www.pioneermathematics.com Pioneer Education The Best Way To Success NTSE | Olympiad | AIPMT | JEE - Mains & Advanced Solution: Here ae = 2 PF ( 22)23  94 2 (2 21) PF’ = ( 22)23 94 2 (2 21)  PFPF' 2  a = 1  e = 2 b2 e2 1 a2  b2 = 3 y2  Equation of hyperbola x2 1 3 or 3x2 – y2 = 3  equation of tangent at ( 2, 3)will be 3 2x 3y3 hence tangent passes through (2 2,3 3)  1 1 x 19. The function f : R   , defined as f(x) = , is:    2 2 1x2 (a) Invertible (b) injective but not surjective (c) surjective but not injective (d) neither injective nor surjective Ans. (c) Solution: x  1 1 fx ;f:R   ,   1x2  2 2 from the graph of f(x) we can observe that function is many one and onto. Pioneer Education| SCO 320, Sector 40–D, Chandigarh +91-9815527721, 0172-4617721 Page 9 of 40 www.pioneermathematics.com Pioneer Education The Best Way To Success NTSE | Olympiad | AIPMT | JEE - Mains & Advanced cot xcosx 20. lim equals  2x3 x 2 1 1 1 1 (a) (b) (c) (d) 24 16 8 4 Ans. (b) Solution:  x t 2 tan tsin t lim t0 (2t)3 sint(1cost) 1 lim  t0 8t3cost 16   21. Let a 2i j2kand bi j. Let c be a vector such that ca 3, ab c 3 and the angle between cand ab be 300. Then a. c is equal to 25 1 (a) (b) 2 (c) 5 (d) 8 8 Ans. (b) Solution: a 2ij2k, bij, ca 3    ab c 3, c ab 6 Now |ab||c|sin300 3,|ab||c|6  a b c sin6, a b 21  a 3, b 2 cos1    3 2  4 6 c  . 22 3 2 ca 3 2 c 2 2 Squaring, we get c 2a.c  a 9  a.c  2 2 22. The normal to the curve y(x – 2) (x – 3) = x + 6 at the point where the curve intersects the y-axis passes through the point:  1 1 1 1 1 1 1 1 (a)  , (b) , (c) , (d) ,          2 2 2 2 2 3 2 3 Ans. (b) Solution: y(x – 2) (x – 3) = x + 6 Intersection with y-axis; Pioneer Education| SCO 320, Sector 40–D, Chandigarh +91-9815527721, 0172-4617721 Page 10 of 40 www.pioneermathematics.com

Description:
NTSE | Olympiad | AIPMT | JEE - Mains & Advanced. Pioneer Education| 5t4 – 10t2+ 8t2 – 16 = 0. 5t2(t2 – 2) + 8(t2 – 2) =0. (5t2 + 8) (t2 – 2) = 0 tan2x = 2 cos 2x = 1 2. 1. 1 2. 3. -. = -. + .. 1. 8. Ans. (b). Solution: a 2i j 2k, b i j, c a 3.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.