ebook img

Iterative solution of dense linear systems arising from the electrostatic integral equation in MEG PDF

15 Pages·2003·0.18 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Iterative solution of dense linear systems arising from the electrostatic integral equation in MEG

INSTITUTEOFPHYSICSPUBLISHING PHYSICSINMEDICINEANDBIOLOGY Phys.Med.Biol.47(2002)961–975 PII:S0031-9155(02)29872-3 Iterative solution of dense linear systems arising from the electrostatic integral equation in MEG JussiRahola1,3andSatuTissari2,3 1SimulintuOy,Niittykummuntie6A8,02200Espoo,Finland 2CSC—ScientificComputingLtd,POBox405,02101Espoo,Finland E-mail:satu.tissari@csc.fi Received19October2001 Published1March2002 Onlineatstacks.iop.org/PMB/47/961 Abstract We study the iterative solution of dense linear systems that arise from boundary element discretizations of the electrostatic integral equation in magnetoencephalography (MEG). We show that modern iterative methods can be used to decrease the total computation time by avoiding the time- consuming computation of the LU decomposition of the coefficient matrix. More importantly, the modern iterative methods make it possible to avoid the explicit formation of the coefficient matrix which is needed when a large number of unknowns are used. To study the convergence of iterative solvers we examine the eigenvalue distributions of the coefficient matrices. For the sphere we show how the eigenvalues of the integral operator are approximated by the eigenvalues of the coefficient matrix when the collocation and Galerkin methods are used as discretization methods. The collocation method approximates the eigenvalues of the integral operator directly. The Galerkin method produces a coefficient matrix that needs to be preconditioned in order to maintain optimal convergence speed. With the ILU(0) preconditioner iterative methods converge fast and independent of the number of discretization points for both the collocation and Galerkin approaches. The preconditioner has no significant effect on the total computationaltime. 1. Introduction In the inverse problem of magnetoencephalography (MEG) (Ha¨ma¨la¨inenetal 1993) the sourceofelectricalactivityinthebrainistobelocalizedfrommagneticfieldmeasurements recorded outside the head. When the same method is applied to the heart, it 3 PartsoftheworkforthispaperwerecarriedoutintheParallelAlgorithmsProject,CERFACS,42Av.GCoriolis, 31057ToulouseCedex01,France. 0031-9155/02/060961+15$30.00 ©2002IOPPublishingLtd PrintedintheUK 961 962 JRaholaandSTissari is called magnetocardiography (MCG). The related electrical recording techniques, electroencephalography(EEG)andelectrocardiography(ECG),areinwideclinicaluse. The sourcelocalizationusingEEGisamuchmorechallengingproblemthanthatofMEGbecause ofthe spreadingof the electricpotentialon the scalp causedbythe insulatingskull. In this paperwewillbeconcentratingontheMEG,butsomeoftheresultsareapplicabletotheother measurementtechniques. TosolvetheinverseproblemusingMEG,asourcedistribution,suchasacurrentdipole, is assumed for the electric activity in the brain. In addition to this, a conductor model of the brain is needed. In the source localization, a series of forward problemsis solved, i.e., the magneticfield outsidethe headcaused by a knownsource is calculated. The computed and measured magnetic fields are then compared and the source parameters (e.g., location, orientationandstrengthofthedipole)areadjustedusinganonlinearoptimizationmethod. In the current paper we use a homogeneous single-compartment conductor model for the brain. It is sufficient to solve the integral equation for the electric potential on the surface of the brain as the skull insulates the surrounding tissues (Ha¨ma¨la¨inenandSarvas 1989). For the MEG, the magnetic field outside the head can be obtained from the computed potential. For the accurate localization of the electric activity we need to have a realistically shaped model for the surface of the brain given by a triangular mesh. For the EEG source localization problems it is necessary to use a multi-compartment integral equation where piecewise homogeneous conductivity is assumed. The multi- compartment integral equations and their iterative solution will not be discussed in this paper. Inearlierstudiesofthebioelectromagneticinverseproblems,adirectsolverhasbeenused forthe dense linear systems arising from the boundaryelementdiscretizations. Techniques basedonLUfactorizationsofthecoefficientmatrixarepracticalbecauseaseriesofproblems has to be solved with the same coefficientmatrix. On the other hand, the LU factorization basedonGaussianeliminationisratherexpensivetocomputeandthusformsacomputational bottlenecktogetherwiththeexplicitformationofthecoefficientmatrix. Modern iterative techniques for dense linear systems have been applied in many applicationareas. However,inthebioelectromagneticliterature,therehavebeenonlysome references to the use of the simple Gauss–Seidel method for the inverse problem in MEG (Ha¨ma¨la¨inenetal1993). WeapplymodernKrylov-subspaceiterativemethodstothisproblem andpresentconvergenceandperformanceresultsfortheiterativesolvers. Theconvergenceofiterativesolversdependsonthedistributionoftheeigenvaluesofthe coefficientmatrices. Westudythetheoreticaleigenvaluesoftheelectrostaticintegraloperator in the case of a spherical source region. We describe how the theoretical eigenvalues are mappedtotheeigenvaluesofthecoefficientmatrixwhentheintegralequationisdiscretized with the collocation and Galerkin methods. We study the eigenvalues of the coefficient matricesalsofortherealisticbrain-shapedconductormodels. The convergence of iterative solvers can be accelerated with the use of proper preconditioningtechniques.Fromtheeigenvalueanalysisweproposeasimplepreconditioning strategyandexplainwhythisstrategyshouldbeanefficientone. Themostimportantreasonforourstudyofthemoderniterativemethodspresentedinthe present paper is not to replace the LU decomposition with the studied iterative methods as suchbuttocombineamoderniterativemethodwithamethodwhichmakesitpossibletosolve thematrixequationwithoutexplicitlyformingthematrix. Inanotherpaperwehavestudied a precorrected FFT method combined with a modern iterative method (TissariandRahola 2001). Thecombinationofthetwomethodsgivesaveryefficienttoolforthesolutionofthe forwardproblemwithalargenumberofunknowns. IterativesolutionofdenselinearsystemsinMEG 963 Inthetraditionalmethod,thebottleneckistheformationofthecoefficientmatrixandits LUdecomposition,whichtakesahugeamountoftime. Thecomplexitiesofthephasesare O(N2) forthe matrixformation, O(N3) forthe computationof the LU decomposition,and O(N2)forthesolutionusingtheLUdecomposition(withasmallconstantofproportionality). Incontrast,thewholecomplexityfortheiterativemethodandtheprecorrectedFFTmethodis onlyO(NlogN). Thusforlargeenoughproblems,thewholeiterativesolutionisfasterthan theapplicationoftheLUdecompositioninthetraditionalmethod. Inaddition,thememory requirementsare significantly diminished. A large number of unknownsare needed in the evaluation of the improvements in the source localization accuracy due to the realistically shapedconductormodels. 2. Boundaryelementmethodformulation In this section we introduce the potential integral equation and discuss the properties of the corresponding integral operators. We introduce some notation that is used when the eigenvaluesoftheintegraloperatorarecomputed. Wealsobrieflydiscussthediscretization schemesandthedeflationoftheresultingmatrixequation. 2.1. Potentialintegralequationandoperator IntheforwardproblemofMEGweneedtocomputethepotentialV(r)onthesurfaceofthe brainduetothesource. Thebrainismodelledasahomogeneousconductorofconductivityσ 1 thatoccupiesthevolumeboundedbythesurface(cid:6). Thepotentialintegralequationisgiven byHa¨ma¨la¨inenetal(1993): (cid:1) σ 1 (r(cid:3)−r)·n(r(cid:3)) V(r)=2 0V∞(r)+ V(r(cid:3)) dS(cid:3) r ∈(cid:6) (1) σ 2π |r(cid:3)−r|3 1 (cid:6) whereV∞(r)isthepotentialcausedbythesourceinaninfinitemediumofunitconductivity σ ,nistheoutwardunitnormalanddS(cid:3) istheelementofarea. 0 The above integral equation is well known in potential theory (see, e.g., Sloan 1992) andisrelatedtotheexteriorDirichletproblemfortheLaplaceequation. Theequationisan integralequationofthesecondkindthatusestheso-calleddouble-layerrepresentationofthe potential. Theoperatorintheequationiscalledtheelectrostaticintegraloperator. LetusdefinetheintegraloperatorK actingonthepotentialV(r): (cid:1) 0 1 (r(cid:3)−r)·n(r(cid:3)) K V(r)= V(r(cid:3)) dS(cid:3). (2) 0 2π |r(cid:3)−r|3 (cid:6) ThefunctionK V(r)satisfiestheLaplaceequationforallfunctionsV(r)andallpointsrthat 0 arenotonthesurface(cid:6)(Sloan1992). On the surface the integral operator becomes singular. When r is a point outside the domainboundedby (cid:6) and approachesa pointr on (cid:6), the so-called jump relations(Sloan 0 1992)yield lim K V(r)=KV(r )−V(r ) (3) 0 0 0 r→r0∈(cid:6) wheretheelectrostaticintegraloperatorKisdefinedasanimproperintegralby (cid:1) 1 (r(cid:3)−r)·n(r(cid:3)) KV(r)= lim V(r(cid:3)) dS(cid:3). (4) (cid:10)→02π |r(cid:3)−r|3 (cid:6),|r(cid:3)−r|>(cid:10) Intheaboveintegralasmallenvironmentofr isexcludedandsubsequentlyalimitistaken wherethesizeoftheenvironmentdecreasestozero(deMunck1992). 964 JRaholaandSTissari Theintegralinequation(1)mustbeunderstoodinthesenseofaCauchyprincipalvalue, andtheintegralequationisthusequivalentto σ V(r)=2 0V∞(r)+KV(r). (5) σ 1 2.2. Discretizationofthepotentialintegralequation We will now discuss the discretization of the integral equation (5). We will express the potentialasalinearcombinationofNglobalbasisfunctionsh (r): j (cid:2)N V(r)= V h (r). (6) j j j=1 The geometry is described by a triangular mesh of the surface of the brain. We use either piecewise constant basis functions, the unknownsbeing the values of the potential on each triangle,orpiecewiselinearbasisfunctions,wheretheunknownsarethevaluesofthepotential attheverticesofthetriangularmesh. Inthelattercase,eachglobalbasisfunctionisnonzero onthetrianglesthatsharethegivenvertex. To form the coefficient matrix from the integral equation we use either the collocation or the Galerkin method of weighted residuals. In the collocation approach we require that theintegralequationbesatisfiedattheso-calledcollocationpointsc . Thenumberofthese i pointsisthesameasthenumberofunknowns. Forthepiecewiseconstantbasisfunctionsthe collocationpointsareatthecentresofthetriangles. Forthepiecewiselinearbasisfunctions thecollocationpointsareattheverticesofthetriangles. Wecannowinsertthepotentialexpansion(6)intoequation(5)andapplythecollocation method, noting that a basis functionh (r) is one at the collocation pointc and zero at all j j othercollocationpoints. ThisleadstothesystemoflinearequationsfortheunknownsV i (cid:2)N σ V =2 0V∞(c )+ V Kh (c ) i =1,...,N. (7) i i j j i σ 1 j=1 Inmatrixnotationthisreadsas (I −G)x =b (8) wherexisthevectorofunknownsV ,bistheright-handsidevectorgivenby i σ b =2 0V∞(c ) (9) i i σ 1 andtheelementsofthematrixGaregivenby g =Kh (c ). (10) ij j i TheGalerkinapproachmeansthatafterthepotentialexpansion(6)issubstitutedintothe integralequation(5),theequationismultipliedbyeachofthebasisfunctionsh(r)initsturn i andafterthattheresultisintegratedoverthesurface(cid:6). TheGalerkinmethodwasstudiedby Mosheretal(1999)andindependentlybythepresentauthors(TissariandRahola1998). Tosimplifythenotationweintroduceaninnerproductdefinedby (cid:1) (cid:9)f(r),g(r)(cid:10)= f(r)g(r)dS. (11) (cid:6) NowthelinearequationsarisingfromtheGalerkinapproachforNtriangles(i = 1,...,N) canbewrittenas (cid:2)N (cid:2)N σ V (cid:9)h (r),h (r)(cid:10)=2 0(cid:9)h (r),V∞(r)(cid:10)+ V (cid:9)h (r),Kh (r)(cid:10). (12) j i j i j i j σ j=1 1 j=1 IterativesolutionofdenselinearsystemsinMEG 965 Inmatrixnotationthiscanbewrittenas (C−F)x =b (13) wheretheelementsofmatrixCaregivenby c =(cid:9)h (r),h (r)(cid:10) (14) ij i j andthoseofFby f =(cid:9)h (r),Kh (r)(cid:10) (15) ij i j whiletheright-handsidebisgivenby σ b =2 0(cid:9)h (r),V∞(r)(cid:10). (16) i i σ 1 Whenpiecewiselinearbasisfunctionsareused,thematrixCisasparsematrixwithc ij beingnonzeroonlyifverticesiandj shareanedgeinthetriangularmesh. ThematrixFisa densematrix. Eachglobalbasisfunctionh (r)isnonzeroonthetrianglessharingthevertexi. i Inpractice,weuselocalelementwisebasisfunctionsthatarenonzeroonlywithinonetriangle, wheretheir value is one at one of the verticesand zero at the two others. The matrices are assembledtrianglebytriangleusinglocalbasisfunctionsandutilizinganalyticallyintegrated elements(deMunck1992). 2.3. Deflation Theintegralequationdeterminesthepotentialonlyuptoanadditiveconstant. Inotherwords, ifthepotentialV(r)satisfiestheintegralequation,sodoesthepotentialV(r)+v . Interms 1 ofthecoefficientmatricesthisimpliesthatthelinearsystems(8)and(13)aresingular. We can remove the singularity by requiring that the sum of the potentials V is zero, i thereby√fixingtheconstantv1. Inmatrixterms,wewilladdthenormalizedvectorofallones, e = 1/ N(11... 1)T, multiplied by a constant γ, to all equations, so that the modified coefficientmatrixwillbe A+γeeT (17) where A refers to the original coefficient matrix. This procedure is called a deflation (Barnardetal1967). The form of the coefficient matrix implies that e is the normalized eigenvector of the matrix corresponding to the eigenvalue zero: Ae = 0. The deflation has the effect that the simple eigenvalue zero is moved to the value γ and the rest of the eigenvalues remain unchanged. Wewilldiscussthechoiceofγ inthenextsection. 3. Eigenvalues 3.1. Eigenvaluesoftheintegraloperatoranddifferentdiscretizations Inthissectionwestudytheeigenvaluesofthepotentialintegraloperatorandthecorresponding coefficient matrices. The distribution of the eigenvalues governs the convergence of the iterativesolvers,andsuggestshowtodeflatethelinearsystem. First,wewillshowhowthecollocationandGalerkinmethodswillapproximatethetrue eigenvalues of the integral operator 1−K appearing in the integral equation (5). For this operator,wewillwritetheeigenvalueequation (1−K)V(r)=λV(r) (18) 966 JRaholaandSTissari whereλisaneigenvalueandV(r)isaneigenfunction. Tosolvethisnumerically,weusethe potentialexpansion(6). Whenweapplythecollocationmethodtothepreviousequation,we obtainthealgebraiceigenvalueproblem (I −G)x =λx (19) where the matrix G and the vector x are the same as in the previous section. Thus the eigenvalues of the coefficient matrix (1 − G) in equation (8) for the collocation method approximatedirectlytheeigenvaluesoftheintegralequation. FortheGalerkinmethodthediscretizedeigenvalueequationisageneralizedeigenvalue problem (C−F)x =λCx. (20) ThisequationcanbepremultipliedbythematrixC−1totransformittotheordinaryeigenvalue problem (I −C−1F)x =λx. (21) Thus,theeigenvaluesoftheGalerkincoefficientmatrixC−Ffromequation(13)arenotthe sameastheeigenvaluesofthematrixI−C−1F ofequation(21)aboveandhencetheydonot approximatetheeigenvaluesoftheintegralequationdirectly. Forasphere,theeigenvaluesoftheintegraloperator1−Kappearinginequation(5)canbe foundwithastraightforwardcalculationusingthesphericalharmonics(AhnerandArenstorf 1986). Theresultisgiveninthefollowingtheorem. Theorem 3.1. When the integral operator K is applied on the surface (cid:6) of a sphere, the eigenvaluesandeigenvectorsof1−Karegivenby 2n (1−K)Ym(θ,φ)= Ym(θ,φ) n=0,1,... m=−n,...,n n 2n+1 n whereYm(θ,φ)arethesphericalharmonicsasdefinedinArfken(1985). n 3.2. Deflation Wecannowreturntothequestionofdeflatingthecoefficientmatrix,i.e.,thechoiceofγ in thetransformationA → A+γeeT. Fromtheorem3.1weseethattheanalyticaleigenvalues for the sphere convergetowards one and thus to movethe zero eigenvalueto one would be ideal in terms of the solution of the linear systems. Therefore, we have set γ = 1 for the collocationapproach. In the Galerkinapproachwe would like to deflate the matrix I −C−1F with the value γ = 1, because we know the eigenvalue distribution of this matrix for the sphere. This is equivalenttochangingtheoriginalcoefficientmatrixC−FtoC−F +CeeT. 3.3. Comparisonofanalyticalandnumericaleigenvalues Forasphere,wepresentacomparisonofthenumericallycomputedandanalyticeigenvalues showingthequalityoftheeigenvalueapproximationsfromdifferentboundaryelementmethod formulations. The numerical eigenvalues were computed using the LAPACK library. The firsttestswererunusingadiscretizationofthespherewith720trianglesand362vertices. In figures1and2 we showthe eigenvaluesofthecoefficientmatrixofthe collocationmethod using the piecewise constant and linear basis functions, respectively, together with the analytically computedeigenvaluesfor the sphere. In the plots we omit the zero eigenvalue whichhasbeendeflatedfromthecoefficientmatrix. IterativesolutionofdenselinearsystemsinMEG 967 x 10−8 3 2 1 λ) g( 0 a m I −1 −2 −3 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 Real(λ) Figure1. Numericaleigenvalues (pluses)forthecollocation methodusingpiecewise constant basisfunctionstogetherwiththeanalyticaleigenvalues(circles)whentheunitsphereisdiscretized with720triangles. Notethedifferentscalesfortherealandimaginaryaxes. 1 0.8 0.6 0.4 0.2 λ) g( 0 a m I−0.2 −0.4 −0.6 −0.8 −1 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 Real(λ) Figure2.Numericaleigenvalues(pluses)forthecollocationmethodusingpiecewiselinearbasis functionstogetherwiththeanalyticaleigenvalues(circles)whentheunitsphereisdiscretizedwith 720triangles. Itcanbeseenfromtheplotsthatthequalityoftheeigenvaluesisapproximatelythesame for the two collocation methods. The piecewise constant basis functions generate a larger matrixfromthesamemesh, asthenumberofunknownsisthenumberoftriangles. Forthe piecewiselinearbasisfunctions,thenumberofunknownsisthenumberofvertices. 968 JRaholaandSTissari x 10−8 8 6 4 2 λ) g( 0 a m I −2 −4 −6 −8 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 Real(λ) Figure3. Numericaleigenvalues (pluses)fortheGalerkinmethodusingpiecewiselinearbasis functionstogetherwiththeanalyticaleigenvalues(circles)whentheunitsphereisdiscretizedwith 720triangles. Notethedifferentscalesfortherealandimaginaryaxes. Infigure3weshowtheanalyticaleigenvaluestogetherwiththeeigenvaluesofthematrix I −C−1F,whereC−FisthecoefficientmatrixfortheGalerkinapproachusingpiecewise linearbasisfunctions. NotethattheaccuracyoftheeigenvaluesismuchbetterfortheGalerkin methodthanforthecorrespondingcollocationapproach. To get a more quantitative measure for the accuracy of the computed eigenvalues, we computedtheabsolutevalueoftheerrorinthesmallestnonzeroeigenvalue(2/3)forthethree discretizationschemesandforfourdifferentdiscretizationsoftheunitsphere. Theresultsare showninfigure4. ItcanbeseenthattheGalerkinmethodhasamuchsmallererrorthanthetwo collocationapproachesandthatfortheGalerkinmethodtheerrordecreasesmuchfasterwhen thediscretizationisrefined. AlsointermsofthesolutionoftheintegralequationtheGalerkin method givesmore accurate results than the collocation methods (Mosheretal 1999). The faster convergencerate of the Galerkin method can also be expected from theoretical error analysesofintegralequations(Sloan1992). Our final eigenvalue experiment consists of finding the eigenvalues for a brain-shaped meshof886triangles. Figure5showstheeigenvaluesofthematrixI−C−1F ofthepiecewise linearGalerkinapproachforthisrealisticallyshapedmesh. Theeigenvaluesaremorespread out than for the sphere. Deflating the zero eigenvalue to 1 is still a good choice for the realisticallyshapedmodel,asplentyofeigenvaluesclusteraroundthispoint. 4. Iterativemethods 4.1. Moderniterativemethods For solving a system of linear equations, iterative methods offer an efficient alternative to direct methods, such as the LU decomposition. Starting from an initial guess the iterative methodsproduceiterates and the iteration can be stoppedwhen a user-definedconvergence IterativesolutionofdenselinearsystemsinMEG 969 10−1 ue10−2 al v n e g ei est 10−3 all m s n Error i10−4 10−5 101 102 103 104 Number of unknowns Figure4. Errorinthesmallestnonzeroeigenvalueasafunctionofthenumberofunknownsfor thepiecewise constantcollocation approach (pluses), thepiecewise linearcollocation approach (stars)andthepiecewiselinearGalerkinapproach(circles). x 10−3 3 2 1 λ) g( 0 a m I −1 −2 −3 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Real(λ) Figure5. Computedeigenvalues (pluses)fortheGalerkinmethodusingpiecewiselinearbasis functions for abrain-shaped meshof 886triangles. Note the different scales for the real and imaginaryaxes. criterionismet. Iterativemethodscanbeveryeffectiveifthenumberofiterationsneededfor convergenceissmall. Historically, the first iterative method was stationary in the sense that the iterates were updated in the same way in each iteration. Stationary iterative methods such as the Jacobi or Gauss–Seidel methods are not used much nowadays because of their slow convergence. InmodernnonstationaryKrylovsubspacemethodsthe iteratesare updatedineachiteration 970 JRaholaandSTissari based on the convergence history. Such methods access the matrix only by matrix–vector products. Thusthewholematrixneednotbeformedexplicitly,onlyitsproductwithagiven vectorneedstobecomputed. For symmetric linear systems the method of choice is the conjugate gradient method because at each iteration the error between its iterates and the true solution is the smallest possible in a certain norm (Barretetal 1993). In addition, the new iterate of the conjugate gradientmethodiseasytocomputefromthepreviousone. For nonsymmetric linear systems the situation is more complicated. The generalized minimal residual method (GMRES) produces iterates x such that the norm of the residual k (cid:12)Ax − b(cid:12) is the smallest possible at each iteration (SaadandSchultz 1986). However, k GMRES needs all the previousiterates in the computation of the new iterate and therefore thecostofthemethodincreaseswiththeiterationnumber. Alessexpensivebutsuboptimal method(GMRES(k))isobtainedifGMRESisrestartedeverykiterations. Other efficient methods for nonsymmetric linear systems include the quasi-minimal residualmethod(QMR)(FreundandNachtigal1991)andthe bi-conjugategradientmethod stabilized(Bi-CGSTAB)(vanderVorst1992). Boththesemethodsaresimpletoapplyasthey onlyrequirethestorageofonepreviousiterate. However,bothmethodsproduceiteratesthat haveonlyanapproximateminimizationproperty. 4.2. Convergenceofiterativemethods Theconvergenceofiterativesolversisgovernedbytheeigenvaluedistributionofthecoefficient matrices. Iterativesolversconvergequicklyiftheeigenvaluesareclusteredandareallaway from zero. In contrast, if there are both small and large eigenvalues, iterative solvers may convergeveryslowly. Theeigenvaluesoftheelectrostaticintegraloperatorareideallysuitedforiterativesolvers. Ifthedeflationiscarriedoutusingthevalueγ =1,theeigenvaluesofasphericalconductor are located on the positive real axis on the interval [2/3, 1]. The coefficient matrices for thecollocationmethodinheritthiseigenvaluedistributiondirectly,andthustheconvergence should be very fast. The number of iterations can be expected to be independent of the numberofunknowns,becauseasthediscretizationisrefined,thedistributionofeigenvalues of the coefficient matrices and thus the behaviour of iterative solvers remains practically constant. Forthe realistically shapedbrainmodel, theeigenvaluesare morespreadout, but thedistributionisstillverygoodforiterativesolvers. 4.3. Iterativemethodsforrealisticbrain-shapedmodel To choose an iterative method for realistic conductor models, we studied the performance ofunpreconditionediterativesolvers. As a stoppingcriterionand errormeasurewe use the normwisebackwarderror(Chaitin-ChatelinandFraysse´1996) (cid:12)b−Ax (cid:12) η(x )= m 2 (22) m α(cid:12)x (cid:12) +(cid:12)b(cid:12) m 2 2 where the constant α should approximate the norm of the matrix A. In the code we use the value α = 1, which is the two-norm of the coefficient matrix in the case of a spherical conductormodel. The normwise backwarderror measuresthe relative error in the solution andisindependentofthescalingoftheright-handsidevectorb. In figure 6 we compare the convergenceof QMR, Bi-CGSTAB and restarted GMRES foramatrixarisingfromarealisticallyshapedmeshof886trianglesandusingthepiecewise constant collocation technique. For GMRES we used the restart parameters 5, 10 and 20.

Description:
Reprinted with permission from Physics in Medicine and Biology 47, pages (EEG) and electrocardiography (ECG), are in wide clinical use. The .. The numerical eigenvalues were computed using the LAPACK library. Arfken G 1985 Mathematical Methods for Physicists (Orlando, FL: Academic).
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.