Cover Page Page: i Half-Title Page Page: i Title Page Page: iii Copyright Page Page: iv Dedication Page Page: v Contents Page: vii Foreword Page: xi Preface Page: xiii Author Page: xvii Chapter 1 ◾ Introduction Page: 1 1.1 Irrational surds Page: 2 1.2 Irrational decimals Page: 6 1.3 Irrationality of the exponential constant Page: 8 1.4 Other results, and some open questions Page: 9 Exercises Page: 10 Appendix: Some elementary number theory Page: 14 Chapter 2 ◾ Hermite's Method Page: 17 2.1 Irrationality of er Page: 18 2.2 Irrationality of π Page: 22 2.3 Irrational values of trigonometric functions Page: 23 Exercises Page: 25 Appendix: Some results of elementary calculus Page: 28 Chapter 3 ◾ Algebraic and Transcendental Numbers Page: 31 3.1 Definitions and basic properties Page: 31 3.1.1 Proving polynomials irreducible Page: 33 3.1.2 Closure properties of algebraic numbers Page: 37 3.2 Existence of transcendental numbers Page: 40 3.3 Approximation of real numbers by rationals Page: 42 3.4 Irrationality of ζ(3): a sketch Page: 54 Exercises Page: 57 Appendix 1: Countable and uncountable sets Page: 61 Appendix 2: The Mean Value Theorem Page: 63 Appendix 3: The Prime Number Theorem Page: 63 Chapter 4 ◾ Continued Fractions Page: 65 4.1 Definition and basic properties Page: 66 4.2 Continued fractions of irrational numbers Page: 69 4.3 Approximation properties of convergents Page: 76 4.4 Two important approximation problems Page: 80 4.4.1 How many days should we count in a calendar year? Page: 81 4.4.2 How many semitones should there be in an octave? Page: 83 4.5 A “computational” test for rationality Page: 85 4.6 Further approximation properties of convergents Page: 87 4.7 Computing the continued fraction of an algebraic irrational Page: 92 4.8 The continued fraction of e Page: 94 Exercises Page: 99 Appendix 1: A property of positive fractions Page: 105 Appendix 2: Simultaneous equations with integral coefficients Page: 105 Appendix 3: Cardinality of sets of sequences Page: 106 Appendix 4: Basic musical terminology Page: 107 Chapter 5 ◾ Hermite's Method for Transcendence Page: 109 5.1 Transcendence of e Page: 110 5.2 Transcendence of π Page: 113 5.2.1 Symmetric polynomials Page: 114 5.2.2 The transcendence proof Page: 117 5.3 Some more irrationality proofs Page: 121 5.4 Transcendence of eα Page: 127 5.5 Other results Page: 139 Exercises Page: 141 Appendix 1: Roots and coefficients of polynomials Page: 143 Appendix 2: Some real and complex analysis Page: 143 Appendix 3: Ordering complex numbers Page: 145 Chapter 6 ◾ Automata and Transcendence Page: 147 6.1 Deterministic finite automata Page: 148 6.2 Mahler's transcendence proof Page: 150 6.3 A more general transcendence result Page: 156 6.4 A transcendence proof for the Thue sequence Page: 162 6.5 Automata and functional equations Page: 164 6.6 Conclusion Page: 168 Exercises Page: 168 Appendix 1: Alphabets, languages and DFAs Page: 170 Appendix 2: Some results of complex analysis Page: 171 A2.1 Taylor series and analytic functions Page: 171 A2.2 Limit points of roots of an analytic function Page: 171 A2.3 Estimation of power series Page: 172 A2.4 Algebraic and transcendental functions Page: 173 Appendix 3: A result on linear equations Page: 175 Chapter 7 ◾ Lambert's Irrationality Proofs Page: 177 7.1 Generalised continued fractions Page: 179 7.1.1 Irrationality of tanhr Page: 182 7.2 Further continued fractions Page: 184 7.2.1 Irrationality of tanr Page: 188 Exercises Page: 190 Appendix: Some results from elementary algebra and calculus Page: 192 Hints for exercises Page: 193 Chapter 1 Page: 193 Chapter 2 Page: 195 Chapter 3 Page: 196 Chapter 4 Page: 201 Chapter 5 Page: 207 Chapter 6 Page: 209 Chapter 7 Page: 212 Bibliography Page: 215 Index Page: 221
Description: