ebook img

Invariant Mean Characterizations of Amenable C*-Algebras PDF

16 Pages·2004·0.69 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Invariant Mean Characterizations of Amenable C*-Algebras

HOUSTON JOURNAL OF MATHEMATICS Volume 17, No. 4, 1991 INVARIANT MEAN CHARACTERIZATIONS OF AMENABLE C*-ALGEBRAS ALAN T. PATERSON Abstract. It is shown that unital amenable and strongly amenable C*-algebras can be characterized by the existence of a right in- variant mean on a certain subspace of œo(cid:127)(H), where H is the unitary group. A fixed-point theorem for amenable C*-algebras is obtained. the main motivation for this paper. Let R be avon Neumann algebra with isometrys emigroupS . Let Bil(cid:127)(R) be the spaceo f boundedb ilinearf orms on R whicha re separatelya, -weaklyc ontinuouosn R. Then R is injectire if and onlyi f theree (cid:127)cistsa meanm on S sucht hatf or all V E Bil(cid:127)(R) and all a (cid:127) R, we have sV (avv)*d, m--f (sVv )( vv*a, )dm(v). Haagerupu ses( 1) in hisp rooft hat nuclearC *-algebraasr ea menable(. An- other proofw hicha voids( 1) and the useo f approximatefi nite dimension- ality hasb een bgyiv Eefnfr os( [7, 8].) Sincei njectivity and amenabilitya re equivalentf or R, it is natural to aski f (1) canb e interpreteda sa ssertintgh e existencoef a suitablyin variant meano n a subspacoef go½(S) with Bil(cid:127)(R). A corresponding question,o f course,c an be askedf or amenableu nital C*-algebrasw ith the unitary group H in place of S. In both cases,t he answeri s positive, and this openst he way to interpretainlgge obpraea rmateonr abihtyi n terms of a classicarli ght invariantm ean( RIM), replacingth e morec omplexn otion of virtual diagonabl y the morea ccessiblaen d better understoodn otion of invariant mean. 551 1. Introduction. The followingre sulto f Haagerup([ 11, Theorem2 .1]) is 552 ALAN L. T. PATERSON In this paper, we examine the C*-case; the author plans to discusst he von Neumann case in another paper. Let A be a unital C*-algebra,a nd Bil(A) be the Banachs paceo f boundedb ilinearf ormso n A. Let Bil22(A) be the subspacoef completely boundedb ilinearf ormsi n Bil(A). Recallt hat a C*-algebraA is called amenablief theree xistsa virtual diagonal-fotrh e definitions, ee( 8) below- for A. This notionw asi ntroducedb y Johnson([ 14]); in his memoir[ 15], Johnsoni ntroduced the notion of a stronglya menableC *-algebra, and Haagerup( [11]) haso bservetdh at this notioni s characterizebdy the exis- tenceo f a speciakl indo f virtuald iagonal(.S eeP ropositio4n. ) Our results can be interpreted as assertingt hat suchv irtual diagonalsc an be taken as arising from a RIM on spaceso f functionso n H. We startb y showingth at amenabilityfo r A is associatewdi th Bil22( A). We show in Proposition 2 that A is amenable if and only if there exists a virtual diagonalo n Bil22(A). This is the analogueo f the result of Effros ([7, 8]) that avon Neumanna lgebraR is amenableif and only if there exists a virtual diagonal on the subspaceo f completely bounded elements of We thent urn to thes ubspaceosf œ (cid:127) (H) whichs upporat RIM whenA is amenableo r strongly amenable. These spacesa re quite simple to define. We definea map A: Bil(A) --, œ(cid:127)(H) by (2) 5(V)(u) = V(u*, u) (u ß Let B(A) be A(Bil(A)) C œoo(H)T. hes ubspacBe2 2(A)o fB (A) is defined: B22(A) = A(Bil22(A)). Both B22(A),B(A) are invarianta nd contain1 . The mainr esulto f thisp aperi s the following(T heorem1 , Theorem2 ): (a) A is stronglya menableif and onlyi f theree xista RIM on B(A) (b) A is amenablief ando nlyi f theree xistsa RIM on B22(A) In the final part of the paper, we prove a fixed-pointt heoremf or amenable C*-algebras. One would expect such a theorem to exist in view of the well knownf act in the theory of amenableg roupst hat sucht heorems area ssociatewdi th invarianmt eanso ns ubspaceosf t oo(G).B unce( [2, 31) proved such a theorem for stronglya menableC *-algebras, and this easily followsb y amenableg roupt echniqueuss ingt he invariantm eanr esult (a) above. We provea fixed-pointth eorema ssociatewd ith (b) above,u sing INVARIANT MEAN CHARACTERIZATIONS 553 the notion of weaklyc ompletelyb oundedA -modules. Here, a locally convex spaceE whichi s a unital A-modulei s calledw eaklyc ompletelyb oundedi f, for every F (cid:127) E* and every x (cid:127) E, the bilinear map Fx, where Fx(a,b) = F(axb) is a completelyb oundedb ilinearf orm on A. This resulte mphasizeas theme of the papert hat amenabilityf or C*-algebrasis a completelyb oundedp he- nomenon.( An eleganta ccounto f the theoryo f completelyb oundedm aps is giveni n [21].) 2. Amenable C*-algebras and invariant means. Let A be a unital C*- algebraT. henB il(A) -- (A(cid:127)A)* is the Banachs paceo f boundedb ilinear formso n A x A. The normo n Bil(A) cana lsob e givenb y: Let Bil22(A) be the subspacoef completelbyo undede lementos f Bil(A). So a bilinearf ormV on A (cid:127) Bil22(A) if it is completelby oundeda s a bilinear map V: A x A -(cid:127) C. (See,f or example[,4 ].) For our purposess,u chf orms can be convenientlsyp ecifieda s follows.L et (a,(cid:127)) (cid:127) a(cid:127) be the universal representatioonf A on its Hilbert space7 -/. Then (cf. [8]) V (cid:127) Bil(A) is completelbyo undeidf and only if theree xist(cid:127), q in 7-/andT (cid:127) B(7-/) such that for all a, b (cid:127) A, (a) We note that sucha representationo f V has been extendedt o the non-scalar caseb y Christenseann d Sinclair( [4])-ane leganat ccounot f this is giveni n [22]. We alson otet hat therea res ubspaceBsil ij(A) for i,j (cid:127) (cid:127)1,2) which arisen aturallya nd are discusseidn [16]. Thesed o not play a role in the presentp aper but are significanti n the yon Neumann case. We will requirea notherc haracterizationo f completelyb oundedb ilin- earf orinsin thep roofo f Propositio5n. Foru (cid:127) A © A, define[[ u[[2_2(cid:127) 0 as follows: (4) u2 2=infE{a jaj- }ll(cid:127)b:bjll«'u=E©ab5 j}' 554 ALAN L. T. PATERSON In [10, 8], the map 11-11i2s2 s hownt o be a norm on A © A and is called the Haagerup norm. It is alsos hownt hat a bilinear. form on A x A is completelyb oundedif and only if it is boundedo n A © A for the Haagerup norm. Recent accountso f the Haagerup norm and other operator space normsa re giveni n [1, 9]. Let R = A** be the envelopingv on Neumanna lgebrao f A realised on 7/. It followsf rom [13, Theorem2 .3] that eachV e Bil(A) extends uniquelyw, ithoutc hangeo f normt o an elementa, lsod enotedV , of Bil(cid:127)(R). (The latter spaceis definedin the Introduction.)S ow e cani dentifyB il(A) with Bil(cid:127)(R) and can identify Bil22(A) with the appropriates ubspace of Bilø(R). This subspacies denotedb y Bil(cid:127)2(R ). The elementsV of Bil(cid:127)2(R ) are alsog ivenb y the formula( 3) with a,b allowedt o lie in R. We recallt hat Bil(A) is a dual BanachA -modulew ith actions ((cid:127)) xV(a, b) - V(a, bx) Vx(a, b) - V(xa, b). Direct checkingin (3) showsth at Bil22(A) is an invariants ubspacoef Bil(A). There is anotheru sefulm odulea ctiono whichw e postponet ill later ((21)). The next results eemsto be well known,b ut for conveniencwe e give the simple proof. Proposition 1. Let V (cid:127) Bil(cid:127)2(R ). Then the mapsx (cid:127) Vx*, x (cid:127) xV are strongo perator-normco ntinuoufsro mR into Bil(cid:127)(R). Proof.' If V is as in (3), then ((cid:127)) IIVx* - Vy*11(cid:127) I1(cid:127)11I ITII IIx(cid:127)- Y(cid:127)11, (7) IIxV- yVII (cid:127) I1(cid:127)11I ITII IIx(cid:127)- yell, The result now follows. [] We now discussa menability for A. This involvest he notion of a virtual diagonaflo r A. Let (cid:127)r: A((cid:127)A -(cid:127) A be the multiplicatiomn ap. An element M of (A(cid:127))A)** is calleda virtuald iagonailf , for all a (cid:127) A: (8) aM- Ma (a e A) 7r**(M)-l. The algebraA is called amenableif there existsa virtual diagonalf or A. INVARIANT MEAN CHARACTERIZATIONS 555 The subspac(cid:127)re* (A*) can easilyb e identifiedw ith A* by associating (cid:127)r*(;b)- V½w ith ;b,w here = It is simple to check that the natural A-module structure of A* coincides with the submodulset ructuret hat it inheritsa s a subspacoef Bil(A), and that A* C Bil22(A). Further,r egardingA C A**, the seconde qualityo f (8) becomes: The first equalityo f (8) can be reformulated: (9) v*Mv= M (v ß H). Indeed, (9) is equivalentto Mv = vM for all v ß H, which in turn is equivalent to aM = Ma for all a ß A sinceH spansA . Virtual diagonalfso r submoduleosf Bil(A) containingA * are defined in the obviousw ay. There is a natural H-action on Bil(A) associatedw ith the module actionso f (5) and (21). We define: b)= Clearly,B il(A) is a BanachH -module.U sing( 5), we have (11) v.V =vVv*. SinceB il22(A)i s an A-submoduolef Bil(A), it followsth at it is alsoa n H-submodule. Note alsot hat for ;bß A*, we havev .V(cid:127), = Vvcv-,a nd sincev *v = 1, we alsoh aveV (cid:127).v = V(cid:127). In particularA, * is an H-submoduloe f Bil(A). In the dual H-module actiono n A**, wherew e regardA C A**, we have v.l = l = l.v for all v ß H. The actionso f (10) of coursed uahset o givea n H-modulea ctiono n (Bil(A))*. Thesea ctionsw ill be denotedb y: (v,M) -(cid:127) v.M (M, v) -(cid:127) M.v. Note that, using( 11): (12) M.v = v*Mv. The followingp ropositions howst hat for amenabilityf or A, we requirea virtual diagonaol nlyo n Bil22(A). 556 ALAN L. T. PATERSON Proposition 2. The C*-algebra A is amenablei f and only if there exists a virtual diagonaol n Bil22(A). Proof'. Supposet hat there exists a virtual diagonal M on the space Bil22(A). Let G be the unitaryg roupo f R. Let V ß Bil(cid:127)2(R ). Let v ß G and {u(cid:127)} be a net in H sucht hat us -(cid:127) v stronglyin R ([23, The- orem 2.3.3]). Now sincet he stronga nd weako peratort opologiesc oincide on G ([26, p. 84]), it followsth at the map u -(cid:127) u* is strongo perator continuous,a nd using Propositioni and the triangular inequality, we have u*(cid:127)Vuo(cid:127) - v*V v[[ --(cid:127) O. Hence vMv*(V) - limu,(cid:127)Mu*(cid:127)(V) = M ands oi dentifyingB il(A) with Bil(cid:127)2(R), wes eet hat M is a virtuald iagonal on Bil(cid:127)aR ). By a resulto f [7, 8], R is amenablea nd so injective. So A is amenable(= nuclear)b y the well-knowrne sult( duet o Connesa nd Choi- Effros):A is nucleari f and onlyi f A** is injectire. The rest of the proof is trivial. [] We now discussin variant meanso n groups. Let G be a group. Con- volutiono n t?(xG ) dualisesto givea G-actiono n (fso)(s)-- f(sos) (sof)(s)-- f(sso) for all so,s ß G and all f ß t?(cid:127)(G). A right invariantm ean (RIM) on t?(cid:127)½(G)i s a mean (=state) on t?(cid:127)½(G)w hichi s right invariantu ndert he right dual G-actiono n (t(cid:127)½(G))*. Soa meanm on G is a RIM if and only if m(sf)-m(f) for all f ß t(cid:127)½(G) and all s ß G. The groupG is calledr ight amenablief theree xistsa RIM on t(cid:127)½(G). Left amenabilitayn d two-sidedam enability for G are defined in the obviousw ays. Recent accountso f amenability theorya re giveni n [19, 24, 25]. A subspacXe of t(cid:127)½(G) is ca.liedle ft invarianti f sf ß X for all f ß X and all s ß G. If X is left invariant and contains1 , then a RIM on X is an elementm ß X* satisfyingre (l) = i = Ilmlla nd m(sf) = re(f) for all f ß X and all s ß G. Similarlyw e can definel eft invariantm eans( LIM's) for right invariantu nital subspaceosf t?(cid:127)(G). We will be concernewd ith INVARIANT MEAN CHARACTERIZATIONS 557 invariantm eanso n subspaceosf œoo(H).S inceH is sol argea nd (usually) highly non-commutative,i t is rarely going to be amenable, and we are interested in the existenceo f invariant means on certain smaller, though significants,u bspaceosf /?(cid:127)(H). The subspaceBs2 2(A) and B(A) that will concernu s are associated with the followingm ap A: Bil(cid:127)(A) -(cid:127)/?(cid:127)(S): (13) zx(v)½) = v½*,,O. We definet he followings ubspaceosf œ(cid:127)(G): (14) B(A) = A(Bil(A)) B22(A)= A(Bil22(A)). We giveH the relativea (A,A*) (i.e. the weak)t opologyT. hen ([20]) H is a topologicagl roup.T he invariantu, nital C*-algebraL UC(H) (resp RUC(H)) is the seto f functionsf &/?(cid:127)(H) sucht hat the map s -(cid:127) sf (resp s -(cid:127) rs) is normc ontinuousS. ince1 & H, eachf (cid:127) LUC(H) is continuous. We now collects omes implef acts relating to the spacesB (A) and B22(A). Proposition 3. (a) The map A is an H-equivariant,n orm decreasing, //near map onto B(A). Further, the spacesB (A),B22(A) are invariant subspaceosf (cid:127)(H), and A(A*) = C1. (b) A*(m) is a uirtual diagonaflo r eueryR IM m on B(A). (c) Both subspaceBs (A) and B22(A) are dosed under the complexc onjugationm ap f -(cid:127) f. (d) 1 e B22(A)C LUC(H). Proof: ((cid:127)) (cid:127)or V e mr(.4), u,,(cid:127) e n, w(cid:127) h(cid:127)v(cid:127) a(v.(cid:127))((cid:127)) = v.(cid:127)((cid:127)*, (cid:127))= v((cid:127)*(cid:127)*, (cid:127)) = a(v)((cid:127))= a(v)(cid:127)((cid:127)) a((cid:127).v)((cid:127)) = (cid:127).v((cid:127)*, (cid:127)) = v((cid:127)*(cid:127)*, (cid:127)) = a(v)((cid:127)) = (cid:127)a(v)((cid:127)) so that A is H-equivariant. Obviously,A is norm-decreasinagn d linear. SinceA is equivarianatn dt he spaceBs il(A),Bi122(A)a re H-modulesi,t followsth at B(A) and B22(A)a re invariant.F inally,i f (cid:127)b e A*, then (15) A(V(cid:127))(v) = V(cid:127)(v*, v) = (cid:127))(v*v) = (cid:127)b(1) 558 ALAN L. T. PATERSON sot hat A(V(cid:127)) = (cid:127)b(1)1. (b) If m is a RIM on B(A), then,f or v e H, (cid:127)b e A*, using( a), (12) and (15)' v*a*((cid:127))v = a*((cid:127)).v = a*(mv) = A*(m)(V+) = m(A(V+)) = (cid:127)5(1) = I(V,). So using( 9), A* (m) is a virtual diagonal. (c) For V e BiI(A), defineV * (cid:127) BiI(A) by: v*½,(cid:127)) = v((cid:127),,(cid:127),). Then A(V)= A(V*), and B(A) is closedu nderc omplex-conjugatioTnh.e samep ropertyh oldsf or B22(A): we observeth at the conjugatef of f (cid:127) B22( A) is obtainedb y replacingth e T in (3) by its adjointa ndi nterchanging (cid:127) and 9. (d) SinceA * C Bi122(A),i t followsfr om (a) that 1 (cid:127) B22(A). If V (cid:127) Bi122(A),t hen for u, v (cid:127) H, (16) uA(V) - (cid:127)A(V) (cid:127) IIVu* - v(cid:127)*11 + uV - vV . Now u, (cid:127) u weakly in A if and only if u, -(cid:127) u in the strong operator topologyo f R - A**. It followsfr om (16) and PropositionI that A(V) (cid:127) (cid:127)vc((cid:127)/). [] The next result givesa n invariant mean characterizationo f amenable C*-algebras. Theorem 1. The followings tatementsa re equivalent: (a) A is amenable (b) ,he(cid:127)e e(cid:127)t(cid:127) (cid:127) (cid:127) o(cid:127) (cid:127)((cid:127)) (c) theree xista RIM on LUC(H) Proof: The equivalencoef (a) and (c) followsb y [20]. SinceB 22(A) C LUC(H) by (d) of Propositio3n, weh avet hat (c) implies(b ). Nows uppose that (b) holdsa ndl et R- A**. Let m be a RIM on B2(cid:127)(A). By (3), each f e B(cid:127)(A) is of the formf T(cid:127)n where: (17) fT(cid:127)n(u) = u*Tu(cid:127).rl. INVARIANT MEAN CHARACTERIZATIONS 559 For g 6 B22(A), defineg * 6 too(H) by settingg *(u) = f(u-1), and let Y ='{g*: g 6 B22(A)}. Then m*, wherem *(g*) = re(g), is a left invariant mean( LIM) on Y. Now H is stronglyd ensein the unitaryg roupG of R, and G is a topologicaglr oupi n the strongo peratotro pology([ 12]). From (17), eachg = fT(, extendsu niquelyb y continuityto a continuoufsu nction g' on G-just allowu in (17) to belongt o G. Let Y'= {g': g 6 Y}. Then Y' C RUe(G): this is easilyc heckeads in Proposition1. (Seea lso[ 12].) As in [20, Proposition1 ], theree xistsa n LIM on Y', and a resulto f de la Sarpe (cf [19, p. 78]) givest hat R is injective.H enceA is nucleara nd so amenable.S o (b) implies( a). [] We will show in Theorem 2 below that strong amenability for A is equivalentt o the existenceo f a RIM on B(A). For conveniencew, e write (cid:127)-dS for the weak* closureo f the convexh ull of a subset$ of a Banach space dual X*, and for any Banachs paceX , will regard X C X**. Recallt hat ([15]) the algebraA is calleds tronglya menablief, when- ever X is a unital Banach A-module and D: A -(cid:127) X* is a derivation, then theree xistsc (cid:127)0 in (cid:127)-d{u*D(u): u 6 H} sucht hat D(a) = for all a 6 A. Haagerup([ 11, Lemma3 .4 seq])r emarkst hat the following characterizationo f stronga menabilityh olds. Proposition 4. The C*-a/gebraA is stronglya menableif and onlyf f there existsa virtual diagonaMl in (cid:127)-d{u* © u: u (cid:127) H}. Theorem 2. The C*-algebra A is stronglya menablei f and only if there existsa RIM on B(A). Proof: Supposeth at m is a RIM on B(A). From (b) of Proposition3 , A*(m) is a virtual diagonaflo r A. For u (cid:127) G, let (cid:127) (cid:127) eo(G)* be given by: (cid:127)(qb) = qb(u).I t is easilyc hecketdh at A*((cid:127)) = u* © u. Sincem is in 2-6{fi:u (cid:127) G}, it followtsh at A*(m) is in 2-6{u©* u:u (cid:127) G} in (ACA)*. By Proposition 4, A is strongly amenable. Converselys,u pposeth at A is stronglya menablea, nd let M be as in Propositio4n. Thent heree xistsa net {f,} in P(G) suchth at in the weak* topology 560 ALAN L. T. PATERSON In particular,i f V (cid:127) Bil(A), then (18) © (19) Definem (A(V)) = M(V). Then m is wen-defineadn di s a meano n B(A). Let v 6 G. By (9) and (11), M(v.V) = M(V). Further,b y (a) of Proposi- tion 3, A(v.V) = vA(V). It follows that m is a RIM. [] We concludeb y discussingh ow some characterizationso f amenable and strongly menable C*-algebras can be interpreted as fixed-point or extensiont heoremso f classicaal menabihtyt ype. In particular, usingm od- ulesw ith a certain completelyb oundedp roperty,w e win provea fixed-point theorem for amenableC *-algebrasw hich fills a gap in the hterature. We begin with stronglym enable C*-algebrasf or which the literature is more complete. In [2, 3], Bunceg ivess ix characterizationosf strongly amenableC *-algebras.A n accounot f the resultso f Buncei s giveni n [25, Chapter2 ]. Three of thesec an be interpreteda s fixed-pointt heoremsfo r the unitary group H analogoust o the classicf ixed-point theorem of Day. A fourth can be interpreteda s a strongerv ersiono f a resulti n [17] which is validf or amenablBe anacha lgebras(.S ee[ 6] for an eleganpt roof.)T he remaining two give invariant extensionc haracterizations. An of these char- acterizationsc an be readily provedu singT heorem 2 and the approacho f the fixed-pointth eoremsfo r amenableg roups([ 19, (2.16) if.]). We are particularly interested in the following fixed-point theorem of Bunce. Theorem 3. The C*-algebraA is stronglya menableif and only iœw hen- ever X is a unital Banach A-module and S is weak*-closed convex subset oœX * such that v*Sv = S for ali v (cid:127) H, then there existsg (cid:127) S such that v* gv = g œora 11v (cid:127) H. Bunce givest wo characterizationso f amenableC *-algebras. As in the strongly amenablec ase,o ne of thesei s of the Khelemskii-typea nd the other is an invariant extensionr esult. Both have Banach algebrav ersions,t he extensiovne rsiona ppearingin [18]. We nowd iscusas fixed-pointth eorem for amenableC *-algebrasc orrespondintgo Theorem3 . Let E be a locally convex space which is a unital A-module. The module E is called weaklyc ompletelyb oundedif , for every F 6 E* and

Description:
Let A be a unital C*-algebra, and Bil(A) be the Banach space of bounded J. - P. Pier, Amenable Banach algebras, Pitman Research Notes in Mathematics.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.