ebook img

Introduction to tensor calculus for general relativity PDF

427 Pages·2000·3.174 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to tensor calculus for general relativity

Massachusetts Institute of Technology Department of Physics Physics (cid:0)(cid:1)(cid:2)(cid:3)(cid:4) Spring (cid:4)(cid:5)(cid:5)(cid:5) Introduction to Tensor Calculus for General Relativity c (cid:4)(cid:5)(cid:5)(cid:5) Edmund Bertschinger(cid:1) (cid:0) (cid:0) Introduction There arethree essentialideas underlyinggeneralrelativity(cid:6)GR(cid:7)(cid:1) The(cid:8)rst isthat space(cid:9) time may be described as a curved(cid:10) four(cid:9)dimensional mathematical structure called a pseudo(cid:9)Riemannian manifold(cid:1) In brief(cid:10) time and space together comprise a curved four(cid:9) dimensional non(cid:9)Euclidean geometry(cid:1) Consequently(cid:10) the practitioner of GR must be familiar with the fundamental geometrical properties of curved spacetime(cid:1) In particu(cid:9) lar(cid:10) the laws of physics must be expressed in a form that is valid independently of any coordinate system used to label points in spacetime(cid:1) The second essential idea underlying GR is that at every spacetime point there exist locallyinertialreferenceframes(cid:10)correspondingtolocally(cid:11)at coordinatescarriedbyfreely falling observers(cid:10) in which the physics of GR is locally indistinguishable from that of special relativity(cid:1) This is Einstein(cid:12)s famous strong equivalence principle and it makes general relativity an extension of special relativity to a curved spacetime(cid:1) The third key idea is that mass (cid:6)as well as mass and momentum (cid:11)ux(cid:7) curves spacetime in a manner described by the tensor (cid:8)eld equations of Einstein(cid:1) These three ideas are exempli(cid:8)edby contrasting GR with Newtonian gravity(cid:1) In the Newtonian view(cid:10) gravity is a force accelerating particles through Euclidean space(cid:10) while time is absolute(cid:1) From the viewpoint of GR as a theory of curved spacetime(cid:10) there is no gravitational force(cid:1) Rather(cid:10) in the absence of electromagnetic and other forces(cid:10) particles follow the straightest possible paths (cid:6)geodesics(cid:7) through a spacetime curved by mass(cid:1) Freely falling particles de(cid:8)ne locally inertial reference frames(cid:1) Time and space are not absolute but are combined into the four(cid:9)dimensional manifold called spacetime(cid:1) In special relativity there exist global inertial frames(cid:1) This is no longer true in the presence of gravity(cid:1) Ho w ever(cid:10) there are local inertial frames in GR(cid:10) such that within a (cid:13) suitably small spacetime volume around an event (cid:6)just how small is discussed e(cid:1)g(cid:1) in MTW Chapter (cid:13)(cid:7)(cid:10) one may choose coordinates corresponding to a nearly(cid:9)(cid:11)at spacetime(cid:1) Thus(cid:10) the local properties of special relativity c a r ry ov er to GR(cid:1) The mathematics of vectorsand tensors appliesin GR muchas it does inSR(cid:10) with the restrictionthat vectors and tensors are de(cid:8)ned independently at each spacetime event (cid:6)or within a su(cid:14)ciently small neighborhood so that the spacetime is sensibly (cid:11)at(cid:7)(cid:1) Working with GR(cid:10) particularly with the Einstein (cid:8)eld equations(cid:10) requires some un(cid:9) derstanding of di(cid:15)erential geometry(cid:1) In these notes we will develop the essential math(cid:9) ematics needed to describe physics in curved spacetime(cid:1) Many physicists receive their introduction to this mathematics in the excellent book of Weinberg (cid:6)(cid:13)(cid:2)(cid:16)(cid:4)(cid:7)(cid:1) Weinberg minimizes the geometrical content of the equations by representing tensors using com(cid:9) ponent notation(cid:1) We believe that it is equally easy to work with a more geometrical description(cid:10) with the additional bene(cid:8)t that geometrical notation makes it easier to dis(cid:9) tinguish physical results that are true in any coordinate system (cid:6)e(cid:1)g(cid:1)(cid:10) those expressible using vectors(cid:7) from those that are dependent on the coordinates(cid:1) Because the geometry of spacetime is so intimately related to physics(cid:10) we believe that it is better to highlight the geometryfrom the outset(cid:1) In fact(cid:10) using a geometricalapproach allows us to develop the essential di(cid:15)erential geometry as an extension of vector calculus(cid:1) Our treatment is closer to that Wald (cid:6)(cid:13)(cid:2)(cid:0)(cid:17)(cid:7) and closer still to Misner(cid:10) Thorne and Wheeler (cid:6)(cid:13)(cid:2)(cid:16)(cid:18)(cid:10) MTW(cid:7)(cid:1) These books are rather advanced(cid:1) For the newcomer to general relativity we warmly recommend Schutz (cid:6)(cid:13)(cid:2)(cid:0)(cid:19)(cid:7)(cid:1) Our notation and presentation is patterned largely after Schutz(cid:1) It expands on MTW Chapters (cid:4)(cid:10) (cid:18)(cid:10) and (cid:0)(cid:1) The student wishing addi(cid:9) tional practice problems in GR should consult Lightman et al(cid:0) (cid:6)(cid:13)(cid:2)(cid:16)(cid:19)(cid:7)(cid:1) A slightly more advanced mathematical treatment is provided in the excellent notes of Carroll (cid:6)(cid:13)(cid:2)(cid:2)(cid:16)(cid:7)(cid:1) These notes assume familiarity with special relativity(cid:1) We will adopt units in which the speed of light c (cid:20) (cid:13) (cid:1) Greek indices (cid:6)(cid:0)(cid:10) (cid:1)(cid:10) etc(cid:1)(cid:10) which t a ke the range (cid:5)(cid:2) (cid:13)(cid:2) (cid:4)(cid:2) (cid:18) (cid:7) f g will be used to represent components of tensors(cid:1) The Einstein summation convention is assumed(cid:21) repeated upper and lower indices are to be summed over their ranges(cid:10) e(cid:1)g(cid:1)(cid:10) A(cid:0)B(cid:0) A(cid:0)B(cid:0) (cid:22) A(cid:1)B(cid:1) (cid:22) A(cid:2)B(cid:2) (cid:22) A(cid:3)B(cid:3)(cid:1) Four(cid:9)vectors will be represented with (cid:1) an arrow ov er the symbol(cid:10) e(cid:1)g(cid:1)(cid:10) A(cid:3)(cid:10) while one(cid:9)forms will be represented using a tilde(cid:10) e(cid:1)g(cid:1)(cid:10) B(cid:23)(cid:1) Spacetime points will be denoted in boldface type(cid:24) e(cid:1)g(cid:1)(cid:10) x refers to a point with coordinates x(cid:0) (cid:1) Our metric has signature (cid:22)(cid:4)(cid:24) the (cid:11)at spacetime Minkowski metric components are (cid:4)(cid:0)(cid:1) (cid:20) diag(cid:6) (cid:13)(cid:2) (cid:22)(cid:13)(cid:2) (cid:22)(cid:13)(cid:2) (cid:22)(cid:13)(cid:7)(cid:1) (cid:2) (cid:1) Vectors and one(cid:2)forms The essential mathematics of general relativity is di(cid:15)erential geometry(cid:10) the branch of mathematics dealing with smoothly curved surfaces (cid:6)di(cid:15)erentiable manifolds(cid:7)(cid:1) The physicist does not need to master all of the subtleties of di(cid:15)erential geometry in order (cid:4) to use general relativity(cid:1) (cid:6)For those readers who want a deeper exposure to di(cid:15)erential geometry(cid:10) see the introductory texts of Lovelock and Rund (cid:13)(cid:2)(cid:16)(cid:19)(cid:10) Bishop and Goldberg (cid:13)(cid:2)(cid:0)(cid:5)(cid:10) or Schutz (cid:13)(cid:2)(cid:0)(cid:5)(cid:1)(cid:7) It is su(cid:14)cient to develop the needed di(cid:15)erential geometry as a straightforward extension of linear algebra and vector calculus(cid:1) However(cid:10) it is important to keep in mind the geometrical interpretation of physical quantities(cid:1) For this reason(cid:10) we will not shy from using abstract concepts like points(cid:10) curves and vectors(cid:10) and we will distinguish between a vector A(cid:3) and its components A(cid:0) (cid:1) U nl i ke some other authors (cid:6)e(cid:1)g(cid:1)(cid:10) Weinberg (cid:13)(cid:2)(cid:16)(cid:4)(cid:7)(cid:10) we will introduce geometrical objects in a coordinate(cid:9)free manner(cid:10) only later introducing coordinates for the purpose of simplifying calculations(cid:1) This approach requires that we distinguish vectors from the related objects called one(cid:9)forms(cid:1) Once the di(cid:15)erences and similarities between vectors(cid:10) one(cid:9)forms and tensors are clear(cid:10) we will adopt a uni(cid:8)ed notation that makes computations easy(cid:1) (cid:0)(cid:1)(cid:2) Vectors We begin with vectors(cid:1) A vector is a quantity with a magnitude and a direction(cid:1) This primitiveconcept(cid:10)familiarfromundergraduate physicsand mathematics(cid:10)appliesequally in general relativity(cid:1) An example of a vector is d(cid:3)x(cid:10) the di(cid:15)erence vector between two in(cid:8)nitesimally close points of spacetime(cid:1) Vectors form a linear algebra (cid:6)i(cid:1)e(cid:1)(cid:10) a vector space(cid:7)(cid:1) If A(cid:3) is a vector and a is a real number (cid:6)scalar(cid:7) then aA(cid:3) is a vector with the same direction (cid:6)or the opposite direction(cid:10) if a (cid:5) (cid:5)(cid:7) whose length is multiplied by a (cid:1) If j j A(cid:3) and B(cid:3) are vectors then so is A(cid:3) (cid:22) B(cid:3)(cid:1) These results are as valid for vectors in a curved four(cid:9)dimensional spacetimeas they are for vectors in three(cid:9)dimensionalEuclidean space(cid:1) Note that we have introduced vectors without mentioning coordinates or coordinate transformations(cid:1) Scalars and vectors are invariant under coordinate transformations(cid:24) vector components are not(cid:1) The whole point of writing the laws of physics (cid:6)e(cid:1)g(cid:1)(cid:10) F(cid:3) (cid:20) m(cid:3)a(cid:7) using scalars and vectors is that these laws do not depend on the coordinate system imposed by the physicist(cid:1) We denote a spacetime point using a boldface symbo l (cid:21) x(cid:1) (cid:6)This notation is not meant to imply coordinates(cid:1)(cid:7) Note that x refers to a point(cid:10) not a vector(cid:1) In a curved spacetime the concept of a radius vector (cid:3)x pointing from some origin to each p oi nt x is not useful because vectors de(cid:8)ned at two di(cid:15)erent points cannot be added straightforwardly as they can in Euclidean space(cid:1) For example(cid:10) consider a sphere embedded in ordinary three(cid:9)dimensional Euclidean space (cid:6)i(cid:1)e(cid:1)(cid:10) a two(cid:9)sphere(cid:7)(cid:1) A vector pointing east at one point on the equator is seen to point radially outward at another point on the equator � whose longitude is greater by (cid:2)(cid:5) (cid:1) The radially outward direction is unde(cid:8)ned on the sphere(cid:1) Technically(cid:10) we are discussing tangent vectors that lie in the tangent space of the manifold at each point(cid:1) For example(cid:10) a sphere may be embedded in a three(cid:9)dimensional Euclideanspaceintowhichmaybeplacedaplanetangenttothesphereatapoint(cid:1) Atwo(cid:9) (cid:18) dimensional vector space exists at the point of tangency(cid:1) However(cid:10) such an embedding is not required to de(cid:8)ne the tangent space of a manifold (cid:6)Wald (cid:13)(cid:2)(cid:0)(cid:17)(cid:7)(cid:1) As long as the space is smooth (cid:6)as assumed in the formal de(cid:8)nition of a manifold(cid:7)(cid:10)the di(cid:15)erence vector d(cid:3)x be tw een two in(cid:8)nitesimally close points may be de(cid:8)ned(cid:1) The set of all d(cid:3)x de(cid:8)nes the tangent space at x(cid:1) By assigning a tangent ve ctor to every spacetime point(cid:10) we can recover the usual concept of a vector (cid:8)eld(cid:1) However(cid:10) without additional preparation one cannot compare vectors at di(cid:15)erent spacetime points(cid:10) because they lie in di(cid:15)erent tangent spaces(cid:1) In later notes we introduce will parallel transport as a means of making this comparison(cid:1) Until then(cid:10) we consider only tangent ve ctors at x(cid:1) To emphasize the status of a tangent ve ctor(cid:10) we will occasionally use a subscript notation(cid:21) A(cid:3)X (cid:1) (cid:0)(cid:1)(cid:0) One(cid:3)forms and dual vector space Nextweintroduceone(cid:9)forms(cid:1) Aone(cid:9)formisde(cid:8)nedas alinearscalarfunctionofavector(cid:1) That is(cid:10) a one(cid:9)form takes a vector as input and outputs a scalar(cid:1) For the one(cid:9)form P(cid:23)(cid:10) P(cid:23)(cid:6)V(cid:3)(cid:7) is also called the scalar product and may be denoted using angle brackets(cid:21) P(cid:23)(cid:6)V(cid:3)(cid:7) (cid:20) P(cid:23)(cid:2)V(cid:3) (cid:6) (cid:6)(cid:13)(cid:7) h i The one(cid:9)form is a linear function(cid:10) meaning that for all scalars a and b and vectors V(cid:3) and W(cid:3) (cid:10) the one(cid:9)form P(cid:23) satis(cid:8)es the following relations(cid:21) P(cid:23)(cid:6)aV(cid:3) (cid:22) bW(cid:3) (cid:7) (cid:20) P(cid:23)(cid:2)aV(cid:3) (cid:22) bW(cid:3) (cid:20) a P(cid:23)(cid:2)V(cid:3) (cid:22) b P(cid:23)(cid:2)W(cid:3) (cid:20) aP(cid:23)(cid:6)V(cid:3)(cid:7)(cid:22) bP(cid:23)(cid:6)W (cid:3) (cid:7) (cid:6) (cid:6)(cid:4)(cid:7) h i h i h i Just as we m ay consider any function f(cid:6) (cid:7) as a mathematical entity independently of any particular argument(cid:10) we m ay consider the one(cid:9)form P(cid:23) independently of any particular vector V(cid:3)(cid:1) We m ay also associate a one(cid:9)form with each spacetime point(cid:10) resulting in a one(cid:9)form (cid:8)eld P(cid:23) (cid:20) P(cid:23)X (cid:1) No w the distinction between a point a ve ctor is crucial(cid:21) P(cid:23)X is a one(cid:9)form at point x while P(cid:23)(cid:6)V(cid:3)(cid:7) is a scalar(cid:10) de(cid:8)ned implicitly at point x(cid:1) The scalar product notation with subscripts makes this more clear(cid:21) P(cid:23)X (cid:2)V(cid:3)X (cid:1) h i One(cid:9)forms obey their own linear algebra distinct fromthat of vectors(cid:1) Givenany two scalars a and b and one(cid:9)forms P(cid:23) and Q(cid:23)(cid:10) we m ay de(cid:8)ne the one(cid:9)form aP(cid:23) (cid:22) bQ(cid:23) by (cid:6)aP(cid:23) (cid:22) bQ(cid:23)(cid:7)(cid:6)V(cid:3)(cid:7) (cid:20) aP(cid:23) (cid:22) bQ(cid:23)(cid:2)V(cid:3) (cid:20) a P(cid:23)(cid:2)V(cid:3) (cid:22) b Q (cid:23)(cid:2)V(cid:3) (cid:20) aP(cid:23)(cid:6)V(cid:3)(cid:7)(cid:22) bQ(cid:23)(cid:6)V(cid:3)(cid:7) (cid:6) (cid:6)(cid:18)(cid:7) h i h i h i Comparing equations (cid:6)(cid:4)(cid:7) and (cid:6)(cid:18)(cid:7)(cid:10) we see that vectors and one(cid:9)forms are linear operators on each other(cid:10) producing scalars(cid:1) It is often helpful to consider a vector as being a linear scalar function of a one(cid:9)form(cid:1) Thus(cid:10) we ma y w ri t e P(cid:23)(cid:2)V(cid:3) (cid:20) P(cid:23)(cid:6)V(cid:3)(cid:7) (cid:20) V(cid:3)(cid:6)P(cid:23)(cid:7)(cid:1) The set of h i all one(cid:9)forms is a vector space distinct from(cid:10) but complementary to(cid:10) the linear vector space of vectors(cid:1) The vector space of one(cid:9)forms is called the dual vector (cid:6)or cotangent(cid:7) space to distinguish it from the linear space of vectors (cid:6)tangent space(cid:7)(cid:1) (cid:17) Although one(cid:9)forms may appear to be highly abstract(cid:10) the concept of dual vector spaces is familiar to any student of quantum mechanics who has seen the Dirac bra(cid:9)ket notation(cid:1) Recall that the fundamental object in quantum mechanics is the state vector(cid:10) represented by a ke t (cid:7) in a linear vector space (cid:6)Hilbert space(cid:7)(cid:1) A distinct Hilbert space is given by the sjet iof bra vectors (cid:8) (cid:1) Bra vectors and ket vectors are linear scalar functions of each other(cid:1) The scalar prodhucjt (cid:8) (cid:7) maps a bra vector and a ket vector to a h j i scalar called a probability amplitude(cid:1) The distinction between bras and kets is necessary because probability amplitudes are complex numbers(cid:1) As we will see(cid:10) the distinction between vectors and one(cid:9)forms is necessary because spacetime is curved(cid:1) (cid:3) Tensors Having de(cid:8)ned vectors and one(cid:9)forms we can now de(cid:8)ne tensors(cid:1) A tensor of rank (cid:6)m(cid:2) n(cid:7)(cid:10) also called a (cid:6)m(cid:2) n(cid:7) tensor(cid:10) is de(cid:8)ned to be a scalar function of m one(cid:9)forms and n vectors that is linear in all of its arguments(cid:1) It follows at once that scalars are tensors of rank (cid:6)(cid:5)(cid:2) (cid:5)(cid:7)(cid:10) vectors are tensors of rank (cid:6)(cid:13)(cid:2) (cid:5)(cid:7) and one(cid:9)forms are tensors of rank (cid:6)(cid:5)(cid:2) (cid:13)(cid:7)(cid:1) We may denote a tensor of rank (cid:6)(cid:4)(cid:2) (cid:5)(cid:7) by T(cid:6)P(cid:23) (cid:2)Q(cid:23)(cid:7)(cid:24) one of rank (cid:6)(cid:4)(cid:2) (cid:13)(cid:7) by T(cid:6)P(cid:23) (cid:2) Q(cid:23)(cid:2)A(cid:3)(cid:7)(cid:10) etc(cid:1) Our notation will not distinguish a (cid:6)(cid:4)(cid:2) (cid:5)(cid:7) tensor T from a (cid:6)(cid:4)(cid:2) (cid:13)(cid:7) tensor T(cid:10) although a notational distinction could be made by placing m arrows and n tildes over the symbo l(cid:10) or by appropriate use of dummy indices (cid:6)Wald (cid:13)(cid:2)(cid:0)(cid:17)(cid:7)(cid:1) The scalar product is a tensor of rank (cid:6)(cid:13)(cid:2) (cid:13)(cid:7)(cid:10) which we will denote I and call the identity tensor(cid:21) I(cid:6)P(cid:23) (cid:2)V(cid:3) (cid:7) P (cid:23) (cid:2)V(cid:3) (cid:20) P(cid:23) (cid:6)V(cid:3) (cid:7) (cid:20) V(cid:3) (cid:6)P(cid:23)(cid:7) (cid:6) (cid:6)(cid:17)(cid:7) (cid:1) h i We call I the identity because(cid:10) when applied to a (cid:8)xed one(cid:9)form P(cid:23) and any vector V(cid:3) (cid:10) it returns P(cid:23)(cid:6)V(cid:3)(cid:7)(cid:1) Although the identity t e ns o r wa s de(cid:8)ned as a mapping from a one(cid:9)form and a vector to a scalar(cid:10) we see that it may equally be interpreted as a mapping from a one(cid:9)form to the same one(cid:9)form(cid:21) I(cid:6)P(cid:23) (cid:2) (cid:7) (cid:20) P(cid:23)(cid:10) where the dot indicates that an argument (cid:6)a vector(cid:7) is needed to give a scalar(cid:1) A(cid:3) similar argument shows that I may be considered the identity operator on the space of vectors V(cid:3) (cid:21) I(cid:6) (cid:2)V(cid:3) (cid:7) (cid:20) V(cid:3)(cid:1) (cid:3) A tensor of rank (cid:6)m(cid:2) n(cid:7) is linear in all its arguments(cid:1) For example(cid:10) for (cid:6)m (cid:20) (cid:4) (cid:2)n (cid:20) (cid:5)(cid:7) we have a straightforward extension of equation (cid:6)(cid:4)(cid:7)(cid:21) T(cid:6)aP(cid:23) (cid:22) bQ (cid:23)(cid:2) c R(cid:23) (cid:22) dS(cid:23)(cid:7) (cid:20) ac T(cid:6)P(cid:23) (cid:2)R(cid:23)(cid:7)(cid:22) ad T(cid:6)P(cid:23) (cid:2)S(cid:23)(cid:7)(cid:22) bc T(cid:6)Q(cid:23)(cid:2)R(cid:23)(cid:7)(cid:22) bd T(cid:6) q(cid:23)(cid:2)S(cid:23)(cid:7) (cid:6) (cid:6)(cid:19)(cid:7) Tensors of a given rank form a linear algebra(cid:10) meaning that a linear combination of tensors of rank (cid:6)m(cid:2) n(cid:7) is also a tensor of rank (cid:6)m(cid:2) n(cid:7)(cid:10) de(cid:8)ned by straightforward extension of equation (cid:6)(cid:18)(cid:7)(cid:1) Two tensors (cid:6)of the same rank(cid:7) are equal if and only if they return the samescalarwhen appliedto allpossible input vectorsand one(cid:9)forms(cid:1) Tensors of di(cid:15)erent rank cannot be added or compared(cid:10) so it is important to keep track of the rank of each (cid:19) tensor(cid:1) Just as in the case of scalars(cid:10) vectors and one(cid:9)forms(cid:10) tensor (cid:8)elds TX are de(cid:8)ned by associating a tensor with each spacetime point(cid:1) There are three ways to change the rank of a tensor(cid:1) The (cid:8)rst(cid:10) called the tensor (cid:6)or outer(cid:7) product(cid:10) combines two tensors of ranks (cid:6)m(cid:1)(cid:2)n (cid:1)(cid:7) and (cid:6) m(cid:2)(cid:2)n (cid:2)(cid:7) to form a tensor of rank (cid:6)m(cid:1) (cid:22) m(cid:2)(cid:2)n(cid:1) (cid:22) n(cid:2)(cid:7) by simply combining the argument lists of the two tensors and thereby expanding the dimensionality of the tensor space(cid:1) For example(cid:10) the tensor product of two ve ctors A(cid:3) and B(cid:3) gives a rank (cid:6)(cid:4)(cid:2) (cid:5)(cid:7) tensor T (cid:20) A(cid:3) B(cid:3) (cid:2) T(cid:6)P(cid:23) (cid:2)Q(cid:23)(cid:7) A(cid:3)(cid:6)P(cid:23)(cid:7) B(cid:3)(cid:6)Q(cid:23)(cid:7) (cid:6) (cid:6)(cid:3)(cid:7) (cid:4) (cid:1) We use the symbol to denote the tensor product(cid:24) later we will drop this symbol for (cid:4) notational conveniencewhen it is clear fromthe contextthat a tensor product is implied(cid:1) Note that the tensor product is non(cid:9)commutative(cid:21) A(cid:3) B(cid:3) (cid:20) B(cid:3) A(cid:3) (cid:6)unless B(cid:3) (cid:20) cA(cid:3) for (cid:4) (cid:5) (cid:4) some scalar c(cid:7) because A(cid:3)(cid:6)P(cid:23)(cid:7) B(cid:3)(cid:6)Q(cid:23)(cid:7) (cid:20) A(cid:3)(cid:6)Q(cid:23)(cid:7) B(cid:3)(cid:6)P(cid:23)(cid:7) for all P(cid:23) and Q(cid:23)(cid:1) We use the symbo l (cid:5) (cid:4) to denote the tensor product of any tw o tensors(cid:10) e(cid:1)g(cid:1)(cid:10) P(cid:23) T (cid:20) P(cid:23) A(cid:3) B(cid:3) is a tensor of rank (cid:6)(cid:4)(cid:2) (cid:13)(cid:7)(cid:1) The second way t o ch ange the rank of a te(cid:4)nsor is by(cid:4) c on (cid:4)t raction(cid:10) which reduces the rank of a (cid:6)m(cid:2) n(cid:7) tensor to (cid:6)m (cid:13)(cid:2)n (cid:13)(cid:7)(cid:1) The third way is the gradient(cid:1) We (cid:2) (cid:2) will discuss contraction and gradients later(cid:1) (cid:4)(cid:1)(cid:2) Metric tensor The scalar product (cid:6)eq(cid:1) (cid:13)(cid:7) requires a vector and a one(cid:9)form(cid:1) Is it possible to obtain a scalar from two vectors or two one(cid:9)forms(cid:25) From the de(cid:8)nition of tensors(cid:10) the answer is clearly yes(cid:1) Any tensor of rank (cid:6)(cid:5)(cid:2) (cid:4)(cid:7) will give a scalar from two ve ctors and any tensor of rank (cid:6)(cid:4)(cid:2) (cid:5)(cid:7) combines two one(cid:9)forms to give a scalar(cid:1) However(cid:10) there is a particular (cid:6)(cid:5)(cid:2) (cid:4)(cid:7) tensor (cid:8)eld gX called the metric tensor and a related (cid:6)(cid:4)(cid:2) (cid:5)(cid:7) tensor (cid:8)eld g;X (cid:1) called the inverse metric tensor for which special distinction is reserved(cid:1) The metric tensor is a symmetric bilinear scalar function of two ve ctors(cid:1) That is(cid:10) given vectors V(cid:3) and W(cid:3) (cid:10) g returns a scalar(cid:10) called the dot product(cid:21) g(cid:6)V(cid:3)(cid:2) W(cid:3) (cid:7) (cid:20) V(cid:3) W(cid:3) (cid:20) W(cid:3) V(cid:3) (cid:20) g(cid:6)W(cid:3) (cid:2) V(cid:3) (cid:7) (cid:6) (cid:6)(cid:16)(cid:7) (cid:3) (cid:3) Similarly(cid:10) g; (cid:1) returns a scalar from two one(cid:9)forms P(cid:23) and Q(cid:23)(cid:10) w h ich we also call the dot product(cid:21) g; (cid:1)(cid:6)P(cid:23) (cid:2)Q(cid:23)(cid:7) (cid:20) P(cid:23) Q(cid:23) (cid:20) P(cid:23) Q(cid:23) (cid:20) g ;(cid:1)(cid:6)P(cid:23) (cid:2)Q(cid:23)(cid:7) (cid:6) (cid:6)(cid:0)(cid:7) (cid:3) (cid:3) Although a dot is used in both cases(cid:10) it should be clear from the context whether g or g ;(cid:1) is implied(cid:1) We reservethe dot product notation for the metricand inversemetrictensors just as we reserve the angle brackets scalar product notation for the identity tensor (cid:6)eq(cid:1) (cid:17)(cid:7)(cid:1) Later (cid:6)in eq(cid:1) (cid:17)(cid:13)(cid:7) we will see what distinguishes g from other (cid:6)(cid:5)(cid:2) (cid:4)(cid:7) tensors and g ;(cid:1) from other symmetric (cid:6)(cid:4)(cid:2) (cid:5)(cid:7) tensors(cid:1) (cid:3) One of the most important properties of the metric is that it allows us to convert vectors to one(cid:9)forms(cid:1) If we forget to include W(cid:3) in equation (cid:6)(cid:16)(cid:7) we get a quantity(cid:10) denoted V(cid:23)(cid:10) that behaves like a one(cid:9)form(cid:21) V(cid:23)(cid:6) (cid:7) g(cid:6)V(cid:3)(cid:2) (cid:7) (cid:20) g(cid:6) (cid:2)V(cid:3)(cid:7) (cid:2) (cid:6)(cid:2)(cid:7) (cid:3) (cid:1) (cid:3) (cid:3) where we have inserted a dot to remind ourselves that a vector must be inserted to give a scalar(cid:1) (cid:6)Recall that a one(cid:9)form is a scalar function of a vector(cid:26)(cid:7) We use the same letter to indicate the relation of V(cid:3) and V(cid:23)(cid:1) Thus(cid:10) the metric g is a mapping from the space of vectors to the space of one(cid:9)forms(cid:21) g (cid:21) V(cid:3) V(cid:23)(cid:1) By de(cid:8)nition(cid:10) the inverse metric g ;(cid:1) is the inverse mapping(cid:21) g; (cid:1) (cid:21) V(cid:23) V(cid:3)(cid:1) (cid:6)The i(cid:6)nverse always exists for nonsingular spacetimes(cid:1)(cid:7) Thus(cid:10) if V(cid:23) is de(cid:8)ned for a(cid:6)ny V(cid:3) by equation (cid:6)(cid:2)(cid:7)(cid:10) the inverse metric tensor is de(cid:8)ned by V(cid:3)(cid:6) (cid:7) g ;(cid:1)(cid:6)V(cid:23)(cid:2) (cid:7) (cid:20) g; (cid:1)(cid:6) (cid:2)V(cid:23)(cid:7) (cid:6) (cid:6)(cid:13)(cid:5)(cid:7) (cid:3) (cid:1) (cid:3) (cid:3) Equations (cid:6)(cid:17)(cid:7) and (cid:6)(cid:16)(cid:7)(cid:27)(cid:6)(cid:13)(cid:5)(cid:7) give us several equivalentways to obtain scalars from vectors V(cid:3) and W(cid:3) and their associated one(cid:9)forms V(cid:23) and W(cid:23) (cid:21) V(cid:23) (cid:2)W(cid:3) (cid:20) W(cid:23) (cid:2)V(cid:3) (cid:20) V(cid:3) W (cid:3) (cid:20) V(cid:23) W (cid:23) (cid:20) I(cid:6)V(cid:23) (cid:2)W(cid:3) (cid:7) (cid:20) I(cid:6)W(cid:23) (cid:2)V(cid:3)(cid:7) (cid:20) g(cid:6)V(cid:3)(cid:2) W(cid:3) (cid:7) (cid:20) g ;(cid:1)(cid:6)V(cid:23) (cid:2)W(cid:23) (cid:7) (cid:6) (cid:6)(cid:13)(cid:13)(cid:7) h i h i (cid:3) (cid:3) (cid:4)(cid:1)(cid:0) Basis vectors and one(cid:3)forms Itispossibletoformulatethemathematicsofgeneralrelativityentirelyusingtheabstract formalismofvectors(cid:10)formsandtensors(cid:1) However(cid:10)whilethegeometrical(cid:6)coordinate(cid:9)free(cid:7) interpretationof quantitiesshould always be keptinmind(cid:10)theabstract approach often is not the most practical way to perform calculations(cid:1) To simplifycalculations it is helpful to introduce a set of linearly independent basis vector and one(cid:9)form (cid:8)elds spanning our vector and dual vector spaces(cid:1) In the same way(cid:10) practical calculations in quantum mechanics often start by expanding the ket vector in a set of basis kets(cid:10) e(cid:1)g(cid:1)(cid:10) energy eigenstates(cid:1) By de(cid:8)nition(cid:10) the dimensionality of spacetime (cid:6)four(cid:7) equals the number of linearly independent basis vectors and one(cid:9)forms(cid:1) We denote our set of basis vector (cid:8)elds by (cid:3)e(cid:0) X (cid:10) where (cid:0) labels the basis vector (cid:6)e(cid:1)g(cid:1)(cid:10) (cid:0) (cid:20) (cid:5) (cid:2)(cid:13)(cid:2)(cid:4)(cid:2)(cid:18)(cid:7) and x labels the spacetime pofint(cid:1) Agny four linearly independent basis vectors at each spacetime point will work(cid:24) we do not not impose orthonormality or any other conditions in general(cid:10) nor have we implied any relation to coordinates (cid:6)although later we will(cid:7)(cid:1) Given a basis(cid:10) we ma y expand any ve ctor (cid:8)eld A(cid:3) as a linear combination of basis vectors(cid:21) A(cid:3)X (cid:20) A(cid:0)X (cid:3)e(cid:0) X (cid:20) A(cid:0)X (cid:3)e(cid:0) X (cid:22) A(cid:1)X (cid:3)e(cid:1) X (cid:22) A(cid:2)X (cid:3)e(cid:2) X (cid:22) A(cid:3)X (cid:3)e(cid:3) X (cid:6) (cid:6)(cid:13)(cid:4)(cid:7) (cid:16) Note our placement of subscripts and superscripts(cid:10) chosen for consistency with the Ein(cid:9) stein summation convention(cid:10) which requires pairing one subscript with one superscript(cid:1) The coe(cid:14)cients A(cid:0) are called the components of the vector (cid:6)often(cid:10) the contravariant components(cid:7)(cid:1) Note well that the coe(cid:14)cients A(cid:0) depend on the basis vectors but A(cid:3) does not(cid:26) Similarly(cid:10) we may choose a basis of one(cid:9)form (cid:8)elds in which to expand one(cid:9)forms like A(cid:23)X(cid:1) Although any set of four linearly independent one(cid:9)forms will su(cid:14)ce for each spacetime point(cid:10) we prefer to choose a special one(cid:9)form basis called the dual basis and (cid:0) denoted e(cid:23)X (cid:1) Note that the placement of subscripts and superscripts is signi(cid:8)cant(cid:24) f g we never use a subscript to label a basis one(cid:9)form while we never use a superscript to label a basis vector(cid:1) Therefore(cid:10) e(cid:23)(cid:0) is not related to (cid:3)e(cid:0) through the metric (cid:6)eq(cid:1) (cid:2)(cid:7)(cid:21) e(cid:23)(cid:0)(cid:6) (cid:7) (cid:20) g(cid:6)(cid:3)e(cid:0)(cid:2) (cid:7)(cid:1) Rather(cid:10) the dual basis one(cid:9)forms are de(cid:8)ned by imposing the following (cid:3) (cid:5) (cid:3) (cid:13)(cid:3) requirements at each spacetime point(cid:21) e(cid:23)(cid:0)X (cid:2) (cid:3)e(cid:1) X (cid:20) (cid:9)(cid:0)(cid:1) (cid:2) (cid:6)(cid:13)(cid:18)(cid:7) h i where (cid:9)(cid:0)(cid:1) is the Kronecker delta(cid:10) (cid:9)(cid:0)(cid:1) (cid:20) (cid:13) if (cid:0) (cid:20) (cid:1) and (cid:9)(cid:0)(cid:1) (cid:20) (cid:5) otherwise(cid:10) with the same values for each spacetime point(cid:1) (cid:6)We must always distinguish subscripts from superscripts(cid:24) the Kronecker delta always has one of each(cid:1)(cid:7) Equation (cid:6)(cid:13)(cid:18)(cid:7) is a system of four linear equations at each spacetime point for each of the four quantities e(cid:23)(cid:0) and it has a unique solution(cid:1) (cid:6)The reader may show that any nontrivial transformation of the dual basis one(cid:9)forms will violate eq(cid:1) (cid:13)(cid:18)(cid:1)(cid:7) Now we may expand any one(cid:9)form (cid:8)eld P(cid:23)X in the basis of one(cid:9)forms(cid:21) (cid:0) P(cid:23)X (cid:20) P(cid:0) X e(cid:23) X (cid:6) (cid:6)(cid:13)(cid:17)(cid:7) The component P(cid:0) of the one(cid:9)form P(cid:23) is often called the covariant component to distin(cid:9) guish it from the contravariant component P (cid:0) of the vector P(cid:3) (cid:1) In fact(cid:10) because we h av e consistently treated vectors and one(cid:9)forms as distinct(cid:10) we should not think of these as being distinct (cid:28)components(cid:28) of the same entity at all(cid:1) There is a simpleway to get the components of vectors and one(cid:9)forms(cid:10) using the fact that vectors are scalar functions of one(cid:9)forms and vice versa(cid:1) One simply evaluates the vector using the appropriate basis one(cid:9)form(cid:21) A(cid:3)(cid:6) e(cid:23)(cid:0)(cid:7) (cid:20) e(cid:23)(cid:0)(cid:2)A(cid:3) (cid:20) e(cid:23)(cid:0)(cid:2)A(cid:1) (cid:3)e(cid:1) (cid:20) e(cid:23)(cid:0)(cid:2) (cid:3)e(cid:1) A(cid:1) (cid:20) (cid:9)(cid:0)(cid:1) A(cid:1) (cid:20) A(cid:0) (cid:2) (cid:6)(cid:13)(cid:19)(cid:7) h i h i h i and conversely for a one(cid:9)form(cid:21) (cid:1) (cid:1) (cid:1) P(cid:23)(cid:6)(cid:3)e(cid:0)(cid:7) (cid:20) P(cid:23) (cid:2) (cid:3)e(cid:0) (cid:20) P(cid:1) e(cid:23) (cid:2) (cid:3)e(cid:0) (cid:20) e(cid:23) (cid:2) (cid:3)e(cid:0) P(cid:1) (cid:20) (cid:9) (cid:0)P(cid:1) (cid:20) P(cid:0) (cid:6) (cid:6)(cid:13)(cid:3)(cid:7) h i h i h i We h av e suppressed the spacetime point x for clarity(cid:10) but it is always implied(cid:1) (cid:0) (cid:4)(cid:1)(cid:4) Tensor algebra We can use the same ideas to expand tensors as products of components and basis tensors(cid:1) First we note that a basis for a tensor of rank (cid:6)m(cid:2)n(cid:7) i s pr ov ided by the tensor product of m vectors and n one(cid:9)forms(cid:1) For example(cid:10) a (cid:6)(cid:5)(cid:2)(cid:4)(cid:7) tensor like the metric tensor can be decomposed into basis tensors e(cid:23)(cid:0) e(cid:23)(cid:1)(cid:1) T he components of a tensor of rank (cid:6)m(cid:2)n(cid:7)(cid:10) (cid:4) labeled with m superscripts and n subscripts(cid:10) are obtained by ev a luating the tensor using m basis one(cid:9)forms and n basis vectors(cid:1) For example(cid:10) the components of the (cid:6)(cid:5)(cid:2)(cid:4)(cid:7) metric tensor(cid:10) the (cid:6)(cid:4)(cid:2)(cid:5)(cid:7) inverse metric tensor and the (cid:6)(cid:13)(cid:2)(cid:13)(cid:7) identity tensor are g(cid:0)(cid:1) g(cid:6)(cid:3)e(cid:0)(cid:2) (cid:3)e(cid:1) (cid:7) (cid:20) (cid:3)e(cid:0) (cid:3)e(cid:1) (cid:2) g (cid:0)(cid:1) g; (cid:1)(cid:6) e(cid:23)(cid:0)(cid:2)e(cid:23)(cid:1)(cid:7) (cid:20) e(cid:23)(cid:0) e(cid:23)(cid:1) (cid:2) (cid:9)(cid:0)(cid:1) (cid:20) I(cid:6) e(cid:23)(cid:0)(cid:2) (cid:3)e(cid:1) (cid:7) (cid:20) e(cid:23)(cid:0) (cid:2) (cid:3)e(cid:1) (cid:6) (cid:6)(cid:13)(cid:16)(cid:7) (cid:1) (cid:3) (cid:1) (cid:3) h i (cid:6)The last equation follows from eqs(cid:1) (cid:17) and (cid:13)(cid:18)(cid:1)(cid:7) The tensors are given by summing over the tensor product of basis vectors and one(cid:9)forms(cid:21) g (cid:20) g(cid:0)(cid:1) e(cid:23)(cid:0) e(cid:23)(cid:1) (cid:2) g; (cid:1) (cid:20) g (cid:0)(cid:1) (cid:3)e(cid:0) (cid:3)e(cid:1) (cid:2) I (cid:20) (cid:9)(cid:0)(cid:1) (cid:3)e(cid:0) e(cid:23)(cid:1) (cid:6) (cid:6)(cid:13)(cid:0)(cid:7) (cid:4) (cid:4) (cid:4) The reader should check that equation (cid:6)(cid:13)(cid:0)(cid:7) follows from equations (cid:6)(cid:13)(cid:16)(cid:7) and the duality condition equation (cid:6)(cid:13)(cid:18)(cid:7)(cid:1) Basis vectors and one(cid:9)forms allow us to represent any tensor equations using com(cid:9) ponents(cid:1) For example(cid:10) the dot product between two vectors or two one(cid:9)forms and the scalar product between a one(cid:9)form and a vector may be written using components as A(cid:3) B(cid:3) (cid:20) g(cid:0)(cid:1) A(cid:0)A(cid:1) (cid:2) P(cid:23)(cid:2)A(cid:3) (cid:20) P(cid:0) A(cid:0) (cid:2) P(cid:23) Q(cid:23) (cid:20) g(cid:0)(cid:1) P(cid:0) P(cid:1) (cid:6) (cid:6)(cid:13)(cid:2)(cid:7) (cid:3) h i (cid:3) The reader should prove these important results(cid:1) If two tensors of the same rank are equal in one basis(cid:10) i(cid:1)e(cid:1)(cid:10) if all of their components are equal(cid:10) then they are equal in any basis(cid:1) While this mathematical result is obvious from the basis(cid:9)free meaning of a tensor(cid:10) it will have important physical implications in GR arising from the Equivalence Principle(cid:1) As we discussed above(cid:10) the metric and inverse metric tensors allow us to transform vectors into one(cid:9)forms and vice versa(cid:1) If we e va luate the components of V(cid:3) and the one(cid:9)form V(cid:23) de(cid:8)ned by equations (cid:6)(cid:2)(cid:7) and (cid:6)(cid:13)(cid:5)(cid:7)(cid:10) we ge t V(cid:0) (cid:20) g(cid:6)(cid:3)e(cid:0)(cid:2)V(cid:3)(cid:7) (cid:20) g(cid:0)(cid:1) V(cid:1) (cid:2) V(cid:0) (cid:20) g ;(cid:1)(cid:6) e(cid:23)(cid:0)(cid:2)V(cid:23)(cid:7) (cid:20) g (cid:0)(cid:1) V(cid:1) (cid:6) (cid:6)(cid:4)(cid:5)(cid:7) Because these two equations must hold for any ve ctor V(cid:3)(cid:10) we conclude that the matrix de(cid:8)ned by g(cid:0)(cid:1) is the inverse of the matrix de(cid:8)ned by g(cid:0)(cid:1) (cid:21) (cid:0)(cid:2) (cid:0) g g(cid:2)(cid:1) (cid:20) (cid:9) (cid:1) (cid:6) (cid:6)(cid:4)(cid:13)(cid:7) We also see that the metricand its inverse are used to lower and raise indices on compo(cid:9) nents(cid:1) Thus(cid:10) given two ve ctors V(cid:3) and W(cid:3) (cid:10) we m ay e va luate the dot product any of four equivalent ways (cid:6)cf(cid:1) eq(cid:1) (cid:13)(cid:13)(cid:7)(cid:21) V(cid:3) W(cid:3) (cid:20) g(cid:0)(cid:1) V(cid:0)W(cid:1) (cid:20) V(cid:0) W(cid:0) (cid:20) V(cid:0)W(cid:0) (cid:20) g(cid:0)(cid:1) V(cid:0) W(cid:1) (cid:6) (cid:6)(cid:4)(cid:4)(cid:7) (cid:3) (cid:2) In fact(cid:10) the metric and its inverse may be used to transform tensors of rank (cid:6)m(cid:2) n(cid:7) into tensors of any rank (cid:6) m (cid:22) k (cid:2)n k(cid:7) where k (cid:20) m(cid:2) m (cid:22) (cid:13) (cid:2)(cid:6)(cid:6)(cid:6)(cid:2)n (cid:1) Consider(cid:10) for example(cid:10) a (cid:6)(cid:13)(cid:2) (cid:4)(cid:7) tensor T with com(cid:2)ponents (cid:2) (cid:2) (cid:0) (cid:0) T (cid:1)(cid:3) T(cid:6) e(cid:23) (cid:2) (cid:3)e(cid:1) (cid:2) (cid:3)e(cid:3)(cid:7) (cid:6) (cid:6)(cid:4)(cid:18)(cid:7) (cid:1) If we fail to plug in the one(cid:9)form e(cid:23)(cid:0)(cid:10) the result is the vector T (cid:2)(cid:1) (cid:3)(cid:3) e(cid:2)(cid:1) (cid:6)A one(cid:9)form must be inserted to return the quantity T (cid:2)(cid:1) (cid:3) (cid:1)(cid:7) This vector may then be inserted into the metric tensor to give the components of a (cid:6)(cid:5)(cid:2) (cid:18)(cid:7) tensor(cid:21) T(cid:0)(cid:1)(cid:3) g(cid:6)(cid:3)e(cid:0)(cid:2)T (cid:2)(cid:1) (cid:3) (cid:3)e(cid:2)(cid:7) (cid:20) g(cid:0)(cid:2) T (cid:2)(cid:1) (cid:3) (cid:6) (cid:6)(cid:4)(cid:17)(cid:7) (cid:1) Wecouldnowusetheinversemetrictoraisethethirdindex(cid:10)say(cid:10)givingusthecomponent of a (cid:6)(cid:13)(cid:2) (cid:4)(cid:7) tensor distinct from equation (cid:6)(cid:4)(cid:18)(cid:7)(cid:21) T(cid:0)(cid:1) (cid:3) g; (cid:1)(cid:6) e(cid:23)(cid:3)(cid:2)T (cid:0)(cid:1)(cid:2) e(cid:23)(cid:2)(cid:7) (cid:20) g (cid:3)(cid:2) T(cid:0)(cid:1)(cid:2) (cid:20) g(cid:3)(cid:2)g(cid:0)(cid:4) T (cid:4)(cid:1) (cid:2) (cid:6) (cid:6)(cid:4)(cid:19)(cid:7) (cid:1) In fact(cid:10) there are (cid:4)m(cid:4)n di(cid:15)erent tensor spaces with ranks summing to m (cid:22) n(cid:1) The metric or inverse metric tensor allow all of these tensors to be transformed into each other(cid:1) Returningtoequation(cid:6)(cid:4)(cid:4)(cid:7)(cid:10) weseewhywemustdistinguishvectors(cid:6)withcomponents V (cid:0) (cid:7) from one(cid:9)forms (cid:6)with components V(cid:0) (cid:7)(cid:1) The scalar product of two ve ctors requires the metric tensor while that of two one(cid:9)forms requires the inverse metric tensor(cid:1) In general(cid:10) g(cid:0)(cid:1) (cid:20) g(cid:0)(cid:1) (cid:1) The only case in which the distinction is unnecessary is in (cid:11)at (cid:5) (cid:6)Lorentz(cid:7) spacetime with orthonormal Cartesian basis vectors(cid:10) in which cas e g(cid:0)(cid:1) (cid:20) (cid:4)(cid:0)(cid:1) is everywhere the diagonal matrix with entries (cid:6) (cid:13)(cid:2) (cid:22)(cid:13)(cid:2) (cid:22)(cid:13)(cid:2) (cid:22)(cid:13)(cid:7)(cid:1) However(cid:10) gravity curves (cid:2) spacetime(cid:1) (cid:6)Besides(cid:10) we may wish to use curvilinear coordinates even in (cid:11)at spacetime(cid:1)(cid:7) As a result(cid:10) it is impossible to de(cid:8)ne a coordinate system for which g(cid:0)(cid:1) (cid:20) g(cid:0)(cid:1) everywhere(cid:1) We must therefore distinguish vectors from one(cid:9)forms and we must be careful about the placement of subscripts and superscripts on components(cid:1) At this stage it is useful to introduce a classi(cid:8)cation of vectors and one(cid:9)forms drawn from special relativity with its Minkowski metric (cid:4)(cid:0)(cid:1) (cid:1) Recall that a vector A(cid:3) (cid:20) A(cid:0)(cid:3)e(cid:0) is called spacelike(cid:10) timelike o r nu ll according to whether A(cid:3) A(cid:3) (cid:20) (cid:4)(cid:0)(cid:1) A(cid:0)A(cid:1) is positive(cid:10) (cid:3) negative or zero(cid:10) respectively(cid:1) In a Euclidean space(cid:10) with positive de(cid:8)nite metric(cid:10) A(cid:3) A(cid:3) (cid:3) is never negative(cid:1) However(cid:10) in the Lorentzian spacetime geometry of special relativity(cid:10) time enters the metric with opposite sign so that it is possible to have A(cid:3) A(cid:3) (cid:5) (cid:5)(cid:1) In particular(cid:10) the four(cid:9)velocity u(cid:0) (cid:20) dx(cid:0)(cid:10)d(cid:11) of a massive particle (cid:6)where d(cid:11) is p(cid:3)roper time(cid:7) is a timelike vector(cid:1) This is seen most simply by performing a Lorentz boost to the rest frame of the particle in which c a s e ut (cid:20) (cid:13)(cid:10) ux (cid:20) uy (cid:20) uz (cid:20) (cid:5) and (cid:4)(cid:0)(cid:1) u(cid:0)u(cid:1) (cid:20) (cid:13)(cid:1) Now(cid:10) (cid:4)(cid:0)(cid:1) u(cid:0)u(cid:1) is a Lorentz scalar so that u(cid:3) (cid:3)u (cid:20) (cid:13) i n an y Lorentz frame(cid:1) Often thi(cid:2)s is written p(cid:3) p(cid:3) (cid:20) m(cid:2) where p(cid:0) (cid:20) mu(cid:0) is th(cid:3)e four(cid:2)(cid:9)momentum for a particle of mass m(cid:1) (cid:3) (cid:2) For a massless particle(cid:6)e(cid:1)g(cid:1)(cid:10) a photon(cid:7) the proper timevanishes but the four(cid:9)momentum (cid:13)(cid:5)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.