ebook img

Introduction to commutative and homological algebra PDF

52 Pages·2005·2.557 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to commutative and homological algebra

Commutative And Homologi al Algebra by ALG Kernel of le ture ‚1 Commutative algebra draught Noetherian rings. We write (f1;f2;:::;fm) for the ideal fg1f1 +g2f2 +(cid:1)(cid:1)(cid:1)+gmfmj g(cid:23) 2 Ag spanned (as A-module) by ff1;f2;:::;fmg (cid:26)A. A ommutative ring A is alled Noetherian, if it satis(cid:12)es the next lemma: Lemma 1.1. The following properties of a ommutative ring A are mutually equivalent 1) any set of elements f(cid:23) ontains some (cid:12)nite subset that generates the same ideal as the initial set; 2) any ideal admits a (cid:12)nite set of generators; 3) for any in(cid:12)nite hain of embedded ideals I1(cid:26)I2(cid:26)I3 (cid:26) (cid:1)(cid:1)(cid:1) there exists n2N su h that I(cid:23) =In 8(cid:23) >n. S Proof. Clearly, (1) ) (2). To dedu e (3) from (2), take a (cid:12)nite set of generatorsfor the ideal I = I(cid:23); sin e they belong to some In, we have I(cid:23) = In = I 8(cid:23) > n. Finally, (1) follows from (3) applied to the hain In = (f1;f2;:::;fn), where fi are hosen from ff(cid:23)g in order to have f(cid:23) 62(f1;f2;:::;f(cid:23)(cid:0)1). (cid:3) Theorem 1.2. (Hilbert's base theorem). If A is Noetherian, then A[x℄ is Noetherian too. Proof.LetI(cid:26)A[x℄beanideal.WewriteLd (cid:26)Aforasetofleading oeÆ ientsofalldegreedpolynomialsinI.Clearly,ea h def S (1) (1) (1) Ld and L1 = dLd areidealsin A. LetL1 begeneratedby a1;a2;:::;as 2A omingfrom f1 ;f2 ;:::;fs1 2I (k) (k) (k) and let max(cid:23)(degf(cid:23)) = m. Similarly, write f1 ;f2 ;:::;fsk for the polynomials whose leading oeÆ ients span the ideal Lk for 06k 6m(cid:0)1. To (cid:12)nish the proof, make: (cid:3) ((cid:22)) Exer i e 1.3. Show that I is spanned by s0+(cid:1)(cid:1)(cid:1)+sm(cid:0)1+s1 polynomials f(cid:23) just onstru ted. Corollary 1.4. A polynomial ring A[x1;x2;:::;xn℄ overa Noetherian ring A is Noetherian as well. (cid:3) Corollary 1.5. Any (cid:12)nitely generated k-algebra is Noetherian for any (cid:12)eld k. Proof. A polynomial algebra k[x1;x2;:::;xn℄ is Noetherian by the previous orollary.Any its fa tor algebraA is Noethe- rian as well: full preimage of any ideal I (cid:26) A under the fa torizing morphism k[x1;x2;:::;xn℄ -- A is an ideal in k[x1;x2;:::;xn℄, i.e.admits a (cid:12)nite set of generators,whose lasses span I over A, ertainly. (cid:3) Integrality. Let A (cid:26) B be two ommutative rings. An element b2B is alled integer over A, if it satis(cid:12)es the onditions from Lemma 1.6 below. If all b 2B are integer over A, then B is alled an integer extension of A or an integer A-algebra. Lemma 1.6. The following properties of an element b2B are pairwise equivalent: m m(cid:0)1 1) b =a1b + (cid:1)(cid:1)(cid:1) +am(cid:0)1b+a0 for some m2N and some a1;a2;:::;am 2A; i 2) A-module spanned by all nonnegative powers fb gi>0 admits a (cid:12)nite set of generators; 1 3) there exist a (cid:12)nitely generated faithful A-submodule M (cid:26)B su h that bM (cid:26)M. Proof. The impli ations (1) =) (2) =) (3) are trivial. To dedu e (1) from (3), let fe1;e2;:::;emg generate M over A m7!bm and let the multipli ation M - M be presented by a matrix Y, i.e.write (be1;be2; ::: ;bem)=(e1;e2;:::;em)(cid:1)Y. { Note that if A-linear map M - M takes(e1;e2;:::;em)7(cid:0)!(e1;e2;:::;em)(cid:1)X, where X is a squarematrix with entries in A, then there is an in lusion (detX)(cid:1)M (cid:26) im{, whi h follows from the Lapla e identity detX (cid:1)Id = Xb (cid:1)X applied to (e1;e2;:::;em). { In our ase the zero operator M - 0 an be presented by the matrix X = b(cid:1)Id (cid:0)Y. So, the multipli ation by det(b(cid:1)Id (cid:0)Y) annihilates M. Sin e M is faithful, det(b(cid:1)Id (cid:0)Y) = 0. This is a polynomial equation on b with the n oeÆ ients in A and the leading term b as required in (1). (cid:3) 2 Example 1.7:Integeralgebrai numbers. LetK (cid:27)Q bea(cid:12)nite dimensional (cid:12)eldextension;thenelementsz2K are alled algebrai numbers. Su h a number z is integer overZi(cid:11) there are some #1;#2;:::;#m 2K su h that the multipli ation by z sends their Q-linear span to itself and is presented there by a matrix whose entries belong to Z. Example 1.8: Invariants of a (cid:12)nite group a tion. Let a (cid:12)nite group G a t on a k-algebra B via k-algebra automorphisms B g- B, g2G, and let A = BG = fa2Bj ga = a 8g2G g be the subalgebra of G-invariants. Then B is an integer Q extensionofA. Indeed, if b1;b2;:::;bs 2B formaG-orbitofanygivenb=b1 2B,thenthepolynomial(cid:12)(t)= (t(cid:0)bi) 3 is moni , lies in A[t℄, and annihilates b. 1 A-moduleM is alled faithful,if aM =0 implies a=0 for a2A 2 as a ve tor spa e over Q 3 a polynomialis alled moni or unitary, if its leading oeÆ ient equals 1 Integer losures. A set of all b2B that are integer over a subring A (cid:26) B is alled an integer losure of A in B. If this losure oin ides with A, then A is alled integrally losed in B. Lemma 1.9. The integer losure of A is a subring in B (in parti ular, ab is integer for any a2A as soon as b is integer). If C (cid:27)B is an other ommutative ring and 2C is integer over an integer losure of A in B, then is integer over A as well (in parti ular, any integer B-algebra is an integer A-algebra as soon as B is an integer A-algebra). m m(cid:0)1 n n(cid:0)1 Proof. If p = xm(cid:0)1p + (cid:1)(cid:1)(cid:1) +x1p+x0, q = yn(cid:0)1q + (cid:1)(cid:1)(cid:1) +y1q+y0 for p;q 2 B, x(cid:23);y(cid:22) 2 A, then A-module i j spannedbyp q with06i6(m(cid:0)1),06j 6(n(cid:0)1)isfaithful(it ontains1)andgoestoitself underthemultipli ation r r(cid:0)1 by both p+q and pq. Similarly, if =zr(cid:0)1 + (cid:1)(cid:1)(cid:1) +z1 +z0 and all z(cid:23) are integer overA, then a multipli ation by preservesa faithful A-module spanned by a suÆ ient number of produ ts iz1j1z2j2 (cid:1)(cid:1)(cid:1) zrjr. (cid:3) 4 Corollary 1.10. For any two ommutative rings A (cid:26) B let f(x);g(x) 2 B[x℄ be two moni polynomials. Then all oeÆ ients of h(x)=f(x)g(x) are integer over A i(cid:11) all oeÆ ients of both f(x), g(x) are integer overA. Q Q 5 Proof. There exists a ring C (cid:27) B su h that f(x) = (t(cid:0)(cid:11)(cid:23)) and g(x) = (t(cid:0)(cid:12)(cid:22)) in C[x℄ for some (cid:11)(cid:23);(cid:12)(cid:22) 2 C. By Q Q Lemma 1.9, all oeÆ ients of h(x) = (t(cid:0)(cid:11)(cid:23)) (t(cid:0)(cid:12)(cid:22)) are integer over A () all (cid:11)(cid:23);(cid:12)(cid:22) are integer over A () all oeÆ ients of f(x) and g(x) are integer over A. (cid:3) Lemma 1.11. Let B (cid:27) A be integer over A. If B is a (cid:12)eld, then A is a (cid:12)eld. Vise versa, if A is a (cid:12)eld and there are no zero divisors in B, then B is a (cid:12)eld. (cid:0)1 (cid:0)m Proof. If B is a (cid:12)eld integer over A, then any non zero a2A has an inverse a 2B, whi h satisfy an equation a = 1(cid:0)m (cid:0)1 m(cid:0)1 (cid:0)1 m(cid:0)2 (cid:11)1a + (cid:1)(cid:1)(cid:1) +(cid:11)m(cid:0)1a +(cid:11)0 with(cid:11)(cid:23)2A. Wemultiplythe both sidesbya and geta =(cid:11)1+ (cid:1)(cid:1)(cid:1) +(cid:11)m(cid:0)1a + m(cid:0)1 i (cid:11)0a 2 A. Conversely, if A is a (cid:12)eld and B is an integer A-algebra, then all non negative integer powers b of any b2B form a (cid:12)nite dimensional ve tor spa e V over A. If b 6=0 and there are no zero divisors in B, then x 7(cid:0)! bx is an (cid:0)1 inje tive linear operator on V, that is, an isomorphism. A preimage of 12V is b . (cid:3) Example 1.12: algebrai elementsand minimalpolynomials.If A=k is a(cid:12)eld and B(cid:27)k is ak-algebra,then b2B isinteger overk i(cid:11) b satisfy a polynomial equationf(b)=0 for some f2k[x℄. Traditionally, su h b is alled algebrai overk rather n than integer. We write k[b℄ for a k-linear span of nonnegative integer powers fb gn>0 and k(b) for a k-linear span of all n integer powers fb gn2Z(if su h exist in B). Clearly, k[b℄ (cid:26) B is the minimal k-subalgebra ontaining 1 and b; in other f(x)7!f(b) terms,k[b℄=im(evb)=k[x℄=ker(evb),whereevb :k[x℄ - B isan evaluation homomorphism. Ifbisalgebrai , def then ker(evb)=(f) = f(cid:1)k[x℄ for some06=f 2k[x℄, be ause k[x℄ is a prin ipal idealdomain. This f is (cid:12)xed uniquely as a moni polynomial of lowest degree su h that f(b)=0; it is alled the minimal polynomial of b overk. Note that k[b℄ is 2 deg(f)(cid:0)1 a deg(f)-dimensional ve tor spa e over k with a basis 1; b; b ; ::: ; b . If B does not have zero divisors, then k[b℄ is a (cid:12)eld by Lemma 1.11; in parti ular, the minimal polynomial of b is irredu ible in this ase. If b is not algebrai , then ker(evb)=0 and k[b℄'k[x℄ is a polynomial ring. In parti ular, it is an in(cid:12)nite dimensional ve tor spa e over k and it is not a (cid:12)eld. This phenomenon will be generalized in Lemma 1.17 below. Lemma 1.13. Letk =Q(A)bethe fra tion(cid:12)eldfora ommutativeringAwithoutzerodivisors,B beanyk-algebra,and b 2 B be algebrai over k with minimal polynomial f 2 k[x℄. If b is integer over A, then all oeÆ ients of f are integer over A. Proof. Sin e b is integer, g(q) = 0 for some moni g 2 A[x℄. Then g = fh in k[x℄ for some moni h 2 k[x℄ and all the oeÆ ients of g, h are integer over A by Corollary1.10. (cid:3) Normal rings. A ommutative ring A without zero divisors is alled normal, if there are no b2Q(A) nA integer over A. Certainly, any (cid:12)eld is normal. Exer i e 1.14. Show that the ring Zis normal. m m(cid:0)1 Hint. Apolynomiala0t +a1t +(cid:1)(cid:1)(cid:1)+am(cid:0)1t+am 2Z[t℄annihilatesa fra tionp=q2Q with oprimep;q2Zonlyif qja0 and pjam Corollary 1.15. Let A be a normal ring and f 2A[x℄ be fa torized in Q(A)[x℄ as f = gh. If both g, h are moni , then ne essarily g;h2A[x℄. Proof. Indeed, all the oeÆ ients of g;h are integer over A by Corollary1.10. (cid:3) Corollary 1.16. LetAbenormalringwiththefra tion(cid:12)eldk =Q(A)andB beanyk-algebra.Then b2B isintegerover A i(cid:11) it is algebrai over k and its minimal polynomial (over k) lies in A[x℄. Proof. This follows immediately from Lemma 1.13. (cid:3) 4 itis known as Gauss -Krone ker -Dedekind lemma 5 For any ommutative ring A and any moni non onstant f(x) 2 A[x℄ there exists a ommutative ring C (cid:27) A su h that Q f(x) = (x(cid:0) (cid:23)) in C[x℄ for some (cid:23) 2 C. It is onstru ted indu tively as follows. Consider a fa tor ring B = A[x℄=(f) (whi h def ontains A as the ongruen e lasses of onstants) and put b = x (mod f) 2 B. Then f(b) = 0 in B[x℄. Hen e the residue after dividingf(x)by(x(cid:0)b)inB[x℄vanishesandwegetthefa torizationf(x)=(x(cid:0)b)h(x)withh(x)2B[x℄.Nowrepeatthepro edure for h, B instead of f, A e.t. . Kernel of le ture ‚1, page 2 Finitely generated ommutative k-algebras. Letkbeany(cid:12)eld.A ommutativek-algebraB is alled(cid:12)nitely (cid:25) generated, if there is a k-algebra epimorphism k[x1;x2;:::;xm℄ -- B. Images bi = (cid:25)(xi) 2 B are alled algebra generators for B over k. Lemma 1.17. A (cid:12)nitely generated k-algebra B is a (cid:12)eld only if ea h b2B is algebrai over k. Proof. Let B be generated by fb1;b2;:::;bmg. We use indu tion over m. The base ase: m=1, B =k[b℄, was onsidered in Example 1.12.Let m>1. If bm is algebrai overk, then k[bm℄ is a (cid:12)eld and B is algebrai overk[bm℄ by the indu tive assumption. Hen e, by Lemma 1.9, B is algebrai over k as well. So, we only have to show that bm must be algebrai over k. Suppose the ontrary: let bm be not algebrai , that is k(bm) be isomorphi to the (cid:12)eld k(x), of rational fun tions in 1 variable, via sending bm 7(cid:0)! x. Then, by the indu tive assumption, B is algebrai over k(bm) and ea h of b1;b2;:::;bm(cid:0)1 satis(cid:12)es a polynomial equation with oeÆ ients in k(bm). Multiplying these equations by appropriate polynomials in bm, we an put their oeÆ ients into k[bm℄ and make all their leading oeÆ ients to be equal to the same polynomial, whi h we denote by p(bm)2k[bm℄. Now, B is integer over the subalgebra F (cid:26)B generated over k by bm and q =1=p(bm). By Lemma 1.11,F is a (cid:12)eld. So, there exists a polynomial g 2 k[x1;x2℄ su h that g(bm;q) is inverse to 1+q in F. Let us write the rational fun tion k g(x; 1=p(x))2k(x) as h(x)=p (x), where h2k[x℄ is oprime to p2k[x℄. Multiplying the both sides of (cid:18) (cid:19) 1 h(bm) 1+ =1 p(bm) pk(bm) k+1 k+1 byp (bm),wegetforbmapolynomialequationh(bm)(p(bm)+1)=p (bm),whi hisnontrivial,be auseh(x)(1+p(x)) is not divisible by p(x). Hen e, bm should be algebrai over k. (cid:3) n Hilbert's Nullstellensatz. Let us write V(I) = fa 2 An j f(a) = 0 8f 2I g (cid:26) A for aÆne algebrai 6 n variety de(cid:12)ned by a system of polynomial equations I (cid:26) k[x1;x2;:::;xn℄. Vise versa, for any subset V (cid:26) A we write I(V) = ff 2 k[x1;x2;:::;xn℄j fjV (cid:17) 0g for a set of all polynomials vanishing along V. Clearly, I(V) is always an ideal and I(V(I)) (cid:27) I for any ideal I. In general, then last in lusion is proper. For example, if 2 1 I =(x ) 2C[x℄, then V(I) =f0g (cid:26)A (C) and I(V(I)) =(x). Theorem 1.18. (week Nullstellensatz). If k is algebrai ally losed, then V(I)=?()12I for an ideal I. Proof. We only have to (cid:12)nd a point p 2 An su h that f(p) = 0 for any polynomial f from a given proper ideal I (cid:26) k[x1;x2;:::;xn℄. Moreover, it is enough to suppose that I is maximal, that is, any f 62I is invertible modulo I. Indeed, otherwiseanidealJ generatedbyf andI wouldbeproperandstri tlylargerthanI,i.e.we ouldrepla eI byJ;a(cid:12)nite hainofsu hrepla ementsleadstosomemaximalideal.AssoonasI ismaximal,thefa toralgebraK =k[x1;x2;:::;xn℄=I isa(cid:12)eld.Hen e,anyelementofK isalgebrai overk (cid:26)K byLemma1.17.Sin ek isalgebrai ally losed,thismeansthat any polynomial is (mod I)- ongruent to some onstant. Let #1;#2;:::;#n be the onstants presenting the basi linear forms x1;x2;:::;xn (mod I). Then any polynomial f 2 k[x1;x2;:::;xn℄ is (mod I) ongruent to f(#1;#2;:::;#n)2k. In parti ular, f(#1;#2;:::;#n)=0 for any f2I as required. (cid:3) k Corollary 1.19. (strong Nullstellensatz). Under onditions of Theorem 1.18, f 2I(V(I))()9k2N :f 2I. n n Proof. Only the impli ation `)' for nonempty V(I) (cid:26) A is nontrivial. To prove it, we identify A with the hyperplane n+1 t = 0 in A oordinated by (t; x1;x2;:::;xn ). If f 2 k[x1;x2;:::;xn℄ (cid:26) k[t; x1;x2;:::;xn ℄ vanishes along V(I), then an ideal J (cid:26) k[t; x1;x2;:::;xn℄ spanned by I and a polynomial g(t;x) = 1(cid:0)tf(x) has empty zero set V(J) (cid:26) n+1 A , be ause of g(x;t) (cid:17) 1 on V(I). So, 1 2 J, i.e.9 q0;q1;:::;qs (cid:26) k[t; x1;x2;:::;xn ℄, f1;f2;:::;fs (cid:26) I : q0(x;t)(1(cid:0)tf(x))+q1(t;x)f1(x)+(cid:1)(cid:1)(cid:1)+qs(x;t)fs(x)=1.Thenahomomorphismk[t;x1;x2;:::;xn℄ - k(x1;x2;:::;xn) sending t 7(cid:0)! 1=f(x), x(cid:23) 7(cid:0)! x(cid:23) takes this equality to q1(1=f(x); x)f1(x)+(cid:1)(cid:1)(cid:1)+qs(1=f(x); x)fs(x) = 1. Sin e I is k proper, some of q(cid:23)(1=f(x);x) should have nontrivial denominators. Hen e, multipli ation by appropriate power f leads k to an expression we are looking for: qe1(x)f1(x)+(cid:1)(cid:1)(cid:1)+qes(x)fs(x)=f (x), where qe(cid:23) 2k[x1;x2;:::;xn℄. (cid:3) 6 ertainly, we analways extendI to anideal spanned byI |this does not e(cid:11)e t on V(I) Kernel of le ture ‚1, page 3 Commutative And Homologi al Algebra by ALG Kernel of le ture ‚2 Tensor Guide Multilinear maps. Let V1;V2;:::;Vn and W be ve tor spa es of dimensions d1;d2;:::;dn and m over an ' arbitrary (cid:12)eld k with hark 6=2. A map V1(cid:2)V2(cid:2) (cid:1)(cid:1)(cid:1) (cid:2)Vn (cid:0)(cid:0)!W is alled multilinear, if in ea h argument 0 00 0 00 '(::: ; (cid:21)v +(cid:22)v ; :::)=(cid:21)'(::: ; v ; :::) + (cid:22)'(::: ; v ; :::) when all the other remain to be (cid:12)xed. The multilinearmaps V1(cid:2)V2(cid:2) (cid:1)(cid:1)(cid:1) (cid:2)Vn - W form a ve tor spa e of Q (i) (i) (i) dimension m(cid:1) d(cid:23). Namely, if we (cid:12)x a base fe1 ;e2 ;:::;edi g for ea h Vi and a base fe1;e2;:::;emg for W, then any multilinear map ' is uniquely de(cid:12)ned by its values at all ombinations of the base ve tors: (cid:0) (cid:1) X (1) (2) (n) ((cid:11)1;(cid:11)2;:::;(cid:11)n) (cid:23) ' e(cid:11)1 ; e(cid:11)2 ; ::: ; e(cid:11)n = a(cid:23) (cid:1)e 2 W (cid:23) Q ((cid:11)1;(cid:11)2;:::;(cid:11)n) As soon as m(cid:1) d(cid:23) numbers a(cid:23) 2 k are given, the map ' is well de(cid:12)ned by the multilinearity. It Pdi (i) (i) sends a olle tion of ve tors (v1;v2;:::;vn), where vi = x(cid:11)i e(cid:11)i 2Vi for 1 6i 6n, to (cid:11)i=1 Xm (cid:16) X (cid:17) ((cid:11)1;(cid:11)2;:::;(cid:11)n) (1) (2) (n) (cid:23) '(v1;v2;:::;vn) = a(cid:23) (cid:1)x(cid:11)1 (cid:1)x(cid:11)2 (cid:1) (cid:1)(cid:1)(cid:1) (cid:1)x(cid:11)n (cid:1)e 2 W j=1 (cid:11)1;(cid:11)2;:::;(cid:11)n ((cid:11)1;(cid:11)2;:::;(cid:11)n) the numbers a(cid:23) an be onsidered as elements of some €(n+1)-dimensional format matrix of the size 1 m(cid:2)d1(cid:2)d2(cid:2) (cid:1)(cid:1)(cid:1) (cid:2)dn(cid:129), if you an imagine su h a thing . Exer i e 2.1. Che k that a olle tion (v1;v2;:::;vn)2V1(cid:2)V2(cid:2) (cid:1)(cid:1)(cid:1) (cid:2)Vn doesn't ontain zero ve tor i(cid:11) there exists a multilinear map ' (to somewhere) su h that '(v1;v2;:::;vn)6=0. ' F Exer i e 2.2. Che k that a multilinear map V1(cid:2)V2(cid:2) (cid:1)(cid:1)(cid:1) (cid:2)Vn - U followed by a linear operator U - W is the FÆ' multilinear map V1(cid:2)V2(cid:2) (cid:1)(cid:1)(cid:1) (cid:2)Vn - W as well. (cid:28) Tensor produ t of ve tor spa es. Let V1(cid:2)V2(cid:2) (cid:1)(cid:1)(cid:1) (cid:2)Vn - U be a (cid:12)xed multilinear map. Then for any ve tor spa e W we have a omposition operator ! ! the spa e Hom(U;W)of all F7(cid:0)!FÆ(cid:28) thespa e of all multilinearmaps - (1) F ' linear operators U - W V1(cid:2)V2(cid:2) (cid:1)(cid:1)(cid:1) (cid:2)Vn - W (cid:28) AmultilinearmapV1(cid:2)V2(cid:2)(cid:1)(cid:1)(cid:1)(cid:2)Vn (cid:0)(cid:0)!U is alleduniversal ifthe ompositionoperator(1)isanisomorphism for any ve tor spa e W. In other words, the multilinear map (cid:28) is universal, if for any W and any multilinear ' F map V1 (cid:2)V2 (cid:2) (cid:1)(cid:1)(cid:1) (cid:2)Vn - W there exist a unique linear operator U - W su h that ' = FÆ(cid:28), i. e. the ommutative diagram - U (cid:28) V1(cid:2)V2(cid:2) (cid:1)(cid:1)(cid:1) (cid:2)Vn F ' - ? W an be always losed by a unique linear dotted row. Claim 2.3. Let V1(cid:2)V2(cid:2) (cid:1)(cid:1)(cid:1) (cid:2)Vn (cid:28)-1 U1 É V1(cid:2)V2(cid:2) (cid:1)(cid:1)(cid:1) (cid:2)Vn (cid:28)-2 U2 be two universal multilinear maps. Then there (cid:19) exists a unique linear isomorphism U1 (cid:0)(cid:0)!U2 su h that (cid:28)2 =(cid:19)(cid:28)1. 1usual d(cid:2)m - matri es, whi h present thelinear mapsV - W,have just 2-dimensional format Proof. Sin e both U1;U2 are universal, there are unique linear operators U1 F2-1 U2 and U2 F1-2 U1 mounted in the diagrams IdU1 U61 (cid:27) (cid:28)1 (cid:28)1 - U1 (cid:28)2 (cid:27)...........F-...1.2....U2 F12 (cid:27) V1(cid:28)(cid:2)2 V2(cid:2) (cid:1)(cid:1)(cid:1) (cid:2)(cid:28)2Vn - F2?1 =) V1(cid:2)V2(cid:2) (cid:1)(cid:1)(cid:1) (cid:2)Vn (cid:28)-(cid:28)12 U1...........F..2-..1..-.. IdU2 U2 U2 U2 IdU2 So,the ompositionF21F12 =IdU2,be auseoftheuniquenesspropertyintheuniversalityofU2.Similarly,F12F21 =IdU1. (cid:3) (i) (i) (i) Q Claim 2.4. Let fe1 ;e2 ;:::;edig 2 Vi be a base (for 1 6 i 6 n). Denote by V1(cid:10)V2(cid:10) (cid:1)(cid:1)(cid:1) (cid:10)Vn a ( di) - dimensional ve tor spa e whose base ve tors are the symbols (1) (2) (n) e(cid:11)1 (cid:10)e(cid:11)2 (cid:10) ::: (cid:10)e(cid:11)n ; 16(cid:11)i 6di (2) ((cid:22)) (all possible formal €tensor produ ts(cid:129) of base ve tors e(cid:23) ). Then the multilinear map (cid:28) V1(cid:2)V2(cid:2) (cid:1)(cid:1)(cid:1) (cid:2)Vn (cid:0)(cid:0)!V1(cid:10)V2(cid:10) (cid:1)(cid:1)(cid:1) (cid:10)Vn whi h sends a base ve tor olle tion (e(cid:11)1;e(cid:11)2;:::;e(cid:11)n) 2 V1 (cid:2)V2 (cid:2) (cid:1)(cid:1)(cid:1) (cid:2)Vn to the orresponding base ve tor (2) is universal. Proof. LetV1(cid:2)V2(cid:2)(cid:1)(cid:1)(cid:1)(cid:2)Vn (cid:0)(cid:0)'!W beamultilinearmapandV1(cid:10)V2(cid:10)(cid:1)(cid:1)(cid:1)(cid:10)Vn F- W bealinearoperator.Comparing the values at the base ve tors, we see that (1) (2) (n) (1) (2) (n) '=FÆ(cid:28) () F(e(cid:11)1 (cid:10)e(cid:11)2 (cid:10) ::: (cid:10)e(cid:11)n )='(e(cid:11)1;e(cid:11)2; ::: ;e(cid:11)n): (cid:3) The Segre embedding. The ve tor spa e V1(cid:10)V2(cid:10) (cid:1)(cid:1)(cid:1) (cid:10)Vn is alled a tensor produ t of V1;V2;:::;Vn . The (cid:28) universal multilinear map V1(cid:2)V2(cid:2) (cid:1)(cid:1)(cid:1) (cid:2)Vn - V1(cid:10)V2(cid:10) (cid:1)(cid:1)(cid:1) (cid:10)Vn is alled a tensor multipli ation. For a olle tionofve tors(v1;v2;:::;vn) 2V1(cid:2)V2(cid:2)(cid:1)(cid:1)(cid:1)(cid:2)Vn theimage(cid:28)(v1;v2;:::;vn)isdenotedbyv1(cid:10)v2(cid:10)(cid:1)(cid:1)(cid:1)(cid:10)vn and alled a tensor produ t of these ve tors. All su h produ ts are alled de omposable tensors. Of ourse, not all the ve tors of V1(cid:10)V2(cid:10) (cid:1)(cid:1)(cid:1) (cid:10)Vn are de omposable and im(cid:28) isn't a ve tor subspa e in V1(cid:10)V2(cid:10) (cid:1)(cid:1)(cid:1) (cid:10)Vn, be ause (cid:28) is multilinear but not linear. However, the linear span of de omposable tensors exhausts the whole of V1(cid:10)V2(cid:10) (cid:1)(cid:1)(cid:1) (cid:10)Vn. Geometri ally, the tensor multipli ation gives a map s P(V1)(cid:2)P(V2)(cid:2) (cid:1)(cid:1)(cid:1) (cid:2)P(Vn) (cid:26) - P(V1(cid:10)V2(cid:10) (cid:1)(cid:1)(cid:1) (cid:10)Vn) alled a Segre embedding. Ifdi =dimVi =mi+1, thenthe Segreembeddingisa bije tionbetween Pm1(cid:2)Pm2(cid:2) (cid:1)(cid:1)(cid:1) (cid:2)Pmn and a Segre subvariety whiP h onsist of all de omposable tensors onsidered up to proportionality. The Segre subvariety has dimension ( mi), doesn't belong to any hyperplane, is ruled by n families of linear Q subspa es, and lives in PN with N =(cid:0)1+ (1+mi). Example 2.5: the Segre embedding Pm1 (cid:2) Pm2 (cid:26) - Pm1+m2+m1m2 sends x = (x0: x1: ::: : xm1) 2 Pm1 and y = (y0: y1: ::: : ym2) 2 Pm2 to the point s(x;y) 2 Pm1+m2+m1m2 whose (1+m1)(1+m2) homogeneous oordinates are (cid:3) all possible produ ts xiyj with 0 6 i 6 m1 and 0 6 j 6 m2. To visualize this thing, take Pm1 = P(V ), Pm2 = P(W), and Pm1+m2+m1m2 =P(Hom(V;W)), where Hom(V;W) is the spa eof all linear maps. Then the Segremap sends a pair (cid:3) ((cid:24);w)2V (cid:2)W to the linear map (cid:24)(cid:10)w, whi h a ts by the rule v 7(cid:0)!(cid:24)(v)(cid:1)w. Exer i e 2.6. Che k that a map V(cid:3) (cid:2)W - Hom(V;W) whi h sends ((cid:24);w) to the operator v 7(cid:0)! (cid:24)(v)(cid:1)w is the (cid:3) universal bilinear map (so, there is a anoni al isomorphism V (cid:10)W 'Hom(V;W)) (cid:3) Exer i e 2.7. Che k that for(cid:24) =(x0;x1; :::; xm1)2V and w =(y0;y1; :::; ym2)2W operator(cid:24)(cid:10)w hasthe matrix aij =xjyi. Sin e any operator (cid:24) (cid:10)w has 1-dimensional image, the orresponding matrix has rank 1. On the other side, any rank 1 matrix has proportional olumns. Hen e, the orresponding operator has 1-dimensional image, say spaned by w2W, and takes v 7(cid:0)! (cid:24)(v)w, where the oeÆ ient (cid:24)(v) 2 k depends on v linearly. So, the image of the Segre embedding onsists of all rank 1 operators up to proportionality. In parti ular, it may be presented as the interse tion of quadri s (cid:18) (cid:19) aij aik det =aija`k(cid:0)aika`j =0 (i. e. by vanishing all 2(cid:2)2 - minors for the matrix (a(cid:22)(cid:23))). a`j a`k Kernel of le ture ‚2, page 2 (cid:10)n def Tensor algebra of a ve tor spa e. If V1 = V2 = (cid:1)(cid:1)(cid:1) = Vn = V, then V = V (cid:10)V (cid:10) (cid:1)(cid:1)(cid:1) (cid:10)V is alled an | {z } n n-th tensor power of V. All tensor powers are ombined in the in(cid:12)nite dimensional non ommutative graded (cid:15) (cid:10)n (cid:10)0 def algebra T V = (cid:8) V , where V = k. n>0 Exer i e 2.8. Using the universality, show that there are anoni al isomorphisms (cid:0) (cid:1) (cid:0) (cid:1) (cid:10)n1 (cid:10)n2 (cid:10)n3 (cid:10)n1 (cid:10)n2 (cid:10)n3 (cid:10)(n1+n2+n3) V (cid:10)V (cid:10)V 'V (cid:10) V (cid:10)V 'V (cid:15) whi h make the ve tor's tensoring to be well de(cid:12)ned asso iative multipli ation on T V. (cid:15) 2 Algebrai ally, T V is what is alled €a free asso iative k-algebra generated by V(cid:129) ( ). Pra ti ally, this means (cid:15) that as soon as a basis fe1;e2;:::;edg (cid:26) V is (cid:12)xed, then T V turns into the spa e of the formal (cid:12)nite linear ombinations of words whi h onsist of the letters ei separated by (cid:10). The words are multipliedby writing after one other onsequently. This multipli ation is extended on the linear ombinations of the words by the usual distributivity rules. (cid:10)n (cid:3)(cid:10)n (cid:3) (cid:3) (cid:3) Duality. The spa es V =V (cid:10)V (cid:10) (cid:1)(cid:1)(cid:1) (cid:10)V and V =V (cid:10)V (cid:10) (cid:1)(cid:1)(cid:1) (cid:10)V are anoni ally dual to ea h | {z } | {z } n n (cid:10)n (cid:3)(cid:10)n other. The pairing between v =v1(cid:10)v2(cid:10) (cid:1)(cid:1)(cid:1) (cid:10)vn 2V and (cid:24) =(cid:24)1(cid:10)(cid:24)2(cid:10) (cid:1)(cid:1)(cid:1) (cid:10)(cid:24)n 2V is given by a full ontra tion n (cid:10) (cid:11) def Y v; (cid:24) = (cid:24)i(vi) : (3) i=1 (cid:3) Let fe1;e2;:::;eng (cid:26) V and f(cid:24)1;(cid:24)2;:::;(cid:24)ng (cid:26) V be dual bases, i. e. (cid:24)i(ej) = 0 for i 6= j and (cid:24)i(ei) = 1. (cid:15) Then the base words fei1 (cid:10)ei2 (cid:10) (cid:1)(cid:1)(cid:1) (cid:10)eirg and f(cid:24)j1 (cid:10)(cid:24)j2 (cid:10) (cid:1)(cid:1)(cid:1) (cid:10)(cid:24)jsg form the dual bases for T V and (cid:15) (cid:3) (cid:10)n(cid:3) (cid:3)(cid:10)n (cid:10)n (cid:3) T V with respe t to the full ontra tion. So, V 'V . On the other side, the spa e (V ) is naturally identi(cid:12)ed with the spa e of all multilinearforms V (cid:2)V (cid:2) (cid:1)(cid:1)(cid:1) (cid:2)V - k, be ause V(cid:10)n is universal. So, there | {z } n (cid:3)(cid:10)n (cid:3) (cid:3) (cid:3) exists a anoni al isomorphism between V = V (cid:10)V (cid:10) (cid:1)(cid:1)(cid:1) (cid:10)V and the spa e of multilinear forms in n | {z } n Qn (cid:3)(cid:10)n arguments from V. It sends a tensor (cid:24) =(cid:24)1(cid:10)(cid:24)2(cid:10) (cid:1)(cid:1)(cid:1) (cid:10)(cid:24)n 2V to the form (v1;v2;:::;vn) 7(cid:0)! (cid:24)i(vi). i=1 I J Partial ontra tions. Let f1;2; ::: ; pg (cid:27) (cid:27)f1;2; ::: ; mg (cid:26) - f1;2; ::: ; qg be two inje tive (not ne es- sary monotonous) maps. We write i(cid:23) and j(cid:23) for I((cid:23)) and J((cid:23)) respe tively and onsiderI =(i1;i2;:::;im) and J = (j1;j2;:::;jm) as two ordered (but not ne essary monotonous) index olle tions of the same ardinality. A linear operator V(cid:3)(cid:10)V(cid:3)(cid:10) (cid:1)(cid:1)(cid:1) (cid:10)V(cid:3)(cid:10)V (cid:10)V (cid:10) (cid:1)(cid:1)(cid:1) (cid:10)V IJ- V(cid:3)(cid:10)V(cid:3)(cid:10) (cid:1)(cid:1)(cid:1) (cid:10)V(cid:3)(cid:10)V (cid:10)V (cid:10) (cid:1)(cid:1)(cid:1) (cid:10)V | {z } | {z } | {z } | {z } p q p(cid:0)m q(cid:0)m Qm N N whi h sends (cid:24)1 (cid:10)(cid:24)2 (cid:10) (cid:1)(cid:1)(cid:1) (cid:10) (cid:24)p (cid:10)v1 (cid:10)v2 (cid:10) (cid:1)(cid:1)(cid:1) (cid:10)vq to (cid:24)i(cid:23)(vj(cid:23)) (cid:1) (cid:24)i (cid:10) vj is alled a partial (cid:23)=1 i62im(I) j62im(J) ontra tion in the indexes I and J. Example 2.9: the ontra tion between a ve tor and a multilinear form. Consider a multilinear form '(v1;v2;:::;vn) as the (cid:3)(cid:10)n (cid:3)(cid:10)(n(cid:0)1) tensor from V and onta t it in the (cid:12)rst index with a ve tor v 2V. The result belongs to V and gives a multilinear form in (n(cid:0)1) arguments. This form is denoted by iv' and alled an inner produ t of v and '. Exer i e 2.10. Che k that iv'(w1;w2;:::;wn(cid:0)1) = '(v; w1;w2;:::;wn(cid:0)1), i. e. the inner multipli ation by v is just the (cid:12)xation of v in the (cid:12)rst argument. Linear span of a tensor. Let U;W (cid:26) V be any two subspa es. Writing down the standard monomial bases, (cid:10)n (cid:10)n (cid:10)n (cid:10)n (cid:10)n we see immediately that (U \W) = U \W in V . So, for any t 2 V there is a minimal subspa e span(t)(cid:26)V whosen-thtensorpower ontainst.Itis alleda linear span oftand oin ideswiththeinterse tion (cid:10)n of all W (cid:26) V su h that t2W . To des ribe span(t) more onstru tively, for any inje tive (not ne essary monotonous) map J =(j1;j2;:::;jn(cid:0)1) : f1; 2; ::: ; (n(cid:0)1)g (cid:26) - f1; 2; ::: ; ng 2 Ifyoulike it, makethefollowing formal exer ise: dedu efromtheuniversality thatfor anyasso iative k-algebra A and ve tor spa e mapV f- A there exists a uniquealgebra homomorphismT(cid:15)V (cid:11)- A su h that(cid:11)jV =f Kernel of le ture ‚2, page 3 onsider a linear map V(cid:3)(cid:10)(n(cid:0)1) Jt- V de(cid:12)ned by omplete ontra tion with t: it sends a de omposable tensor ' = (cid:24)1 (cid:10)(cid:24)2 (cid:10) (cid:1)(cid:1)(cid:1) (cid:10)(cid:24)n(cid:0)1 to a ve tor obtained by oupling (cid:23)-th fa tor (cid:24)(cid:23), of ', with j(cid:23)-th fa tor of t for all 1 6(cid:23) 6(n(cid:0)1), i.e. J (1;2;:::;(n(cid:0)1)) t(') = (j1;j2;:::;jn(cid:0)1) ('(cid:10)t): (cid:16) (cid:17) J (cid:3)(cid:10)(n(cid:0)1) Claim 2.11. span(t)(cid:26)V is spanned by the images t V (cid:26)V taken for all possible J. (cid:0) (cid:1) (cid:10)n J Proof. Letspan(t)=W (cid:26)V.Thent2W andim(cid:0) t(cid:1) (cid:26)W 8J.ItremainstoprovethatW isannihilatedbyanylinear (cid:3) J (cid:3) form (cid:24)2V whi h an(cid:16)nihilate all(cid:17)the subspa es im t . Suppose the ontrary:let (cid:24) 2V have non zero restri tion on W J (cid:3)(cid:10)(n(cid:0)1) (cid:3) but annihilate all t V . Then there exist a base fw1;w2;:::;wkg for W and a base f(cid:24)1;(cid:24)2;:::;(cid:24)dg for V su h (cid:3) that: (cid:24)1 =(cid:24), therestri tionsof (cid:24)1;(cid:24)2;:::;(cid:24)k ontoW formthe baseofW dualto fw(cid:23)g, and(cid:24)k+1; ::: ; (cid:24)d annihilateW. Now, for any J and (cid:24)i1;(cid:24)i2;:::;(cid:24)in(cid:0)1 we have (cid:10) (cid:0) (cid:1)(cid:11) (cid:10) (cid:11) J 0= (cid:24); t (cid:24)i1(cid:10)(cid:24)i2(cid:10) (cid:1)(cid:1)(cid:1) (cid:10)(cid:24)in(cid:0)1 = (cid:24)ij1(cid:0)1 (cid:10) (cid:1)(cid:1)(cid:1) (cid:10)(cid:24)ijs(cid:0)(cid:0)11 (cid:10)(cid:24)(cid:10)(cid:24)ijs(cid:0)+11 (cid:10) (cid:1)(cid:1)(cid:1) (cid:10)(cid:24)ijn(cid:0)1 ; t (4) (cid:0)1 (cid:0)1 (cid:0)1 (cid:0)1 where s = f1; 2; ::: ; ngnim(J) and J = (j1 ;j2 ;:::;jn ) is the inverse to J map from im(J) (cid:26) f1; 2; ::: ; ng (cid:3)(n(cid:0)1) to f1; 2; ::: ; (n(cid:0)1)g. Note that ea h basi monomial of V ontaining as a fa tor (cid:24)1 = (cid:24) an appear as the (cid:12)rst operandintherightsideof (4).Butifweexpandttroughthebasi monomialswi1(cid:10)wi2(cid:10)(cid:1)(cid:1)(cid:1)(cid:10)win,thenthe oeÆ ients of this expansion an be omputed as full ontra tions of t with the orresponding elements (cid:24)i1(cid:10)(cid:24)i2 (cid:10) (cid:1)(cid:1)(cid:1) (cid:10)(cid:24)in from (cid:3)(cid:10)n the dual base for W . By (4), su h a ontra tionequals zero as soon one of (cid:24)i(cid:11) equals (cid:24)1 =(cid:24), whi h is dual to w1. So, span(t) is ontained in the linear span of w2; ::: ; wk but this ontradi ts our assumption. (cid:3) ' Symmetry properties. A multilinear map V (cid:2)V (cid:2) (cid:1)(cid:1)(cid:1) (cid:2)V - W is alled symmetri if it doesn't hange | {z } n its value under any permutations of the arguments. If the value of ' is stable under the even permutations and hanges the sign under the odd ones, then ' is alled skew symmetri . Sin e the omposition operator (1) preserves the symmetry properties, for the (skew)symmetri ' the omposition operator (1) turns into 0 1 ! thespa e of all (skew)symmetri the spa e Hom(U;W)of all F7(cid:0)!FÆ' F -  multilinear mapsV (cid:2)V (cid:2) (cid:1)(cid:1)(cid:1) (cid:2)V - W A (5) linear operators U - W | {z } n ' A (skew)symmetri multilinear map V (cid:2)V (cid:2) (cid:1)(cid:1)(cid:1) (cid:2)V - U is alled universal if (5) is an isomorphism for | {z } n n any W. In the symmetri ase the universal target spa e is denoted by S V and alled n-th symmetri power n of V. In the skew symmetri ase it is alled n-th exterior power of V and denoted by (cid:3) V. n n Exer i e 2.12. Show that, if exist, S V and (cid:3) V are unique up to unique isomorphism ommuting with the universal maps. (cid:15) (cid:15) Symmetri algebra S V of V is a fa tor algebra of the free asso iative algebra T V by a ommutation (cid:15) relations vw =wv. More pre isely, denote by Isym (cid:26)T V a linear span of all tensors (cid:1)(cid:1)(cid:1) (cid:10)v(cid:10)w(cid:10) (cid:1)(cid:1)(cid:1) (cid:0) (cid:1)(cid:1)(cid:1) (cid:10)w(cid:10)v(cid:10) (cid:1)(cid:1)(cid:1) ; where the both terms are de omposable, have the same degree, and di(cid:11)er only in order of v;w. Clearly, Isym (cid:15) is a double-sided ideal in T V generated by a linear span of all the di(cid:11)eren es v (cid:10)w(cid:0)w(cid:10)v 2 V (cid:10)V. The (cid:15) def (cid:15) fa tor algebra S V = T V=Isym is alled a symmetri algebra of the ve tor spa e V. By the onstru tion, it is 3 (cid:10)n ommutative . Sin e Isym = (cid:8) (Isym\V ) isthe dire t sum of its homogeneous omponents, the symmetri n>0 (cid:15) L n n def (cid:10)n (cid:10)n algebra is graded: S V = S V, where S V = V =(Isym\V ). n>0 Claim 2.13. The tensor multipli ation followed by the fa torization map: V (cid:2)V (cid:2) (cid:1)(cid:1)(cid:1) (cid:2)V (cid:28) - V(cid:10)n (cid:25)-- Sn(V) (6) | {z } n gives the universal symmetri multilinear map. 3Again, if you like it, prove that for any ommutative k-algebra A and a ve tor spa e map V f- A there exists a unique homomorphismof ommutativealgebras S(cid:15)V (cid:11)- A su h that(cid:11)jV =f Kernel of le ture ‚2, page 4 Proof. Any multilinear map V (cid:2)V (cid:2) (cid:1)(cid:1)(cid:1) (cid:2)V '- W is uniquely de omposed as '=FÆ(cid:28), where V(cid:10)n F- W is linear. F is fa tored through (cid:25) i(cid:11) F((cid:1)(cid:1)(cid:1) (cid:10)v(cid:10)w(cid:10) (cid:1)(cid:1)(cid:1))=F((cid:1)(cid:1)(cid:1) (cid:10)w(cid:10)v(cid:10) (cid:1)(cid:1)(cid:1)), i. e. i(cid:11) '(::: ;v;w; :::)='(::: ;w;v; :::) (cid:3) n The graded omponents S V are alled symmetri powers of V and the map (6) is alled a symmetri multipli- n ation. Ifabasefe1;e2;:::;edg(cid:26)V is(cid:12)xed,thenS V isnaturallyidenti(cid:12)edwiththespa eofallhomogeneous polynomials of degree n in ei. Namely, onsider the polynomial ring k[e1;e2;:::;ed℄ (whose €variables(cid:129) are the base ve tors ei) and identify V with the spa e of all linear homogeneous polynomials in ei. Exer i e 2.14. Che k that the multipli ation map Qn ! (`1;`2;:::;`n)7(cid:0)! `(cid:23) (cid:23)=1 thehomogeneous polynomials V (cid:2)V (cid:2) (cid:1)(cid:1)(cid:1) (cid:2)V - | {z } of degree n in ei n (cid:0) (cid:1) n d+n(cid:0)1 is universal and show that dimS V = . n (cid:15) (cid:15) Exterior algebra (cid:3) V of V is a fa tor algebra of the free asso iative algebra T V by a skew ommutation (cid:15) relations vw =(cid:0)wv. More pre isely, onsider a double-sided ideal Iskew (cid:26)T V generated by all sums v(cid:10)w+ (cid:15) def (cid:15) w(cid:10)v 2V (cid:10)V and put (cid:3) V = T V=Iskew. Exa tly as in the symmetri ase, the ideal Iskew is homogeneous: (cid:10)n (cid:10)n Iskew = (cid:8) (Iskew\V ), where (Iskew\V ) is the linear span of all sums n>0 (cid:1)(cid:1)(cid:1) (cid:10)v(cid:10)w(cid:10) (cid:1)(cid:1)(cid:1) + (cid:1)(cid:1)(cid:1) (cid:10)w(cid:10)v(cid:10) (cid:1)(cid:1)(cid:1) (cid:15) (the both items have degree n and di(cid:11)er only in the order of v;w). So, the fa tor algebra (cid:3) V is graded by the n def (cid:10)n (cid:10)n subspa es (cid:3) V = V =(Iskew\V ). Exer i e 2.15. Provethat the tensor multipli ation followed by the fa torization V (cid:2)V (cid:2) (cid:1)(cid:1)(cid:1) (cid:2)V ..(cid:28)...-... V(cid:10)n (cid:25)-- (cid:3)n(V) (7) | {z } n gives the universal skew symmetri multilinear map. Themap(7) is alledan exterior orskew multipli ation.Theskewprodu tof ve tors (v1;v2;:::;vn)isdenoted by v1 ^v2^ (cid:1)(cid:1)(cid:1) ^vn. By the onstru tion, it hanges the sign under the transposition of any two onsequent terms. So, under any permutation of terms the skew produ t is multiplied by the sign of the permutation. n n n n n n n n Exer i e 2.16. For any U;W (cid:26)V he k that S U\S W =S (U\U) in S V and (cid:3) U\(cid:3) W =(cid:3) (U \U) in (cid:3) V. (cid:15) Grassmannian polynomials. Let fe1;e2;:::;edg (cid:26) V be a basis. Then the exterior algebra (cid:3) V is identi(cid:12)ed with a grassmannian polynomial ring khe1;e2;:::;edi whose €variables(cid:129) are the base ve tors ei whi h skew ommute, that is, ei ^ej = (cid:0)ej ^ei for all i;j. More pre isely, it is linearly spanned by the grassmannian monomials ei1 ^ ei2 ^ (cid:1)(cid:1)(cid:1) ^ ein. It follows from skew ommutativity that ei ^ ei = 0 for all i, that is, a grassmannian monomialvanishesas soonas itbe omes of degree more then1 insome ei. So, any grassmannian monomial has a unique representation ei1 ^ei2 ^ (cid:1)(cid:1)(cid:1) ^ein with 1 6i1 <i2 < (cid:1)(cid:1)(cid:1) <in 6d. def Claim 2.17. The monomials eI = ei1 ^ ei2 ^ (cid:1)(cid:1)(cid:1) ^ ein, where I = (i1;i2;:::;in) runs through the in reasing(cid:0) n(cid:1)- n n n d element subsets in f1;2; ::: ;dg, form a base for (cid:3) V. In parti ular, (cid:3) V = 0 for n > dimV , dim(cid:3) V = , n d and dim khe1;e2;:::;edi=2 . (cid:0) (cid:1) d Proof. Consider n -dimensional ve tor spa e U whose base onsists of the symbols (cid:24)I, where I = (i1;i2;:::;in) runs through the in reasing n-element subsets in f1;2; ::: ;dg. De(cid:12)ne a skew symmetri multilinear map (cid:11) V1(cid:2)V2(cid:2) (cid:1)(cid:1)(cid:1) (cid:2)Vn (cid:0)(cid:0)!U : (ej1;ej2;:::;ejn) 7(cid:0)! sgn((cid:27))(cid:1)(cid:24)I ; where I =(j(cid:27)(1);j(cid:27)(2); ::: ;j(cid:27)(n);) is an in reasing olle tion obtained from (j1;j2;:::;jn) by a (unique) permutation (cid:27). ' This map is universal. Indeed, for any skew symmetri multilinear map V (cid:2)V (cid:2) (cid:1)(cid:1)(cid:1) (cid:2)V - W there exists at most | {z } n F one linear operator U - W su h that ' = FÆ(cid:11), be ause it has to a t on the base as F((cid:24)I) = '(ei1;ei2;:::;ein)) for all in reasing I = (i1;i2;:::;in). On the other side, su h F really de omposes ', be ause F((cid:11)(ej1;ej2;:::;ejn)) = '(ej1;ej2;:::;ejn))forallnotin reasing base olle tions(ej1;ej2;:::;ejn)(cid:26)V| (cid:2)V (cid:2){z(cid:1)(cid:1)(cid:1) (cid:2)V}aswell.Bytheuniversality, n n there exists a anoni al isomorphism between U and (cid:3) V whi h sends (cid:24)I to ei1 ^ei2 ^ (cid:1)(cid:1)(cid:1) ^ein =eI. (cid:3) deg(f)(cid:1)deg(g) Exer i e 2.18. Che k that f(e)^g(e)=((cid:0)1) g(e)^f(e) for all homogeneous f(e);g(e)2 khe1;e2;:::;edi. In parti ular, ea h even degree homogeneous polynomial ommutes with any grassmannian polynomial. Kernel of le ture ‚2, page 5 Exer i e 2.19. Des ribe the enter of khe1;e2;:::;edi, i. e. all grassmannian polynomials whi h ommute with every- thing. Pd Example 2.20: linear base hange in grassmannian polynomial. Under the linear substitution ei = aij(cid:24)j the base mono- j=1 mials eI are hanged by the new base monomials (cid:24)I as follows: (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) X X X eI =ei1 ^ei2 ^ (cid:1)(cid:1)(cid:1) ^ein = ai1j1(cid:24)j ^ ai2j2(cid:24)j ^ (cid:1)(cid:1)(cid:1) ^ ainjn(cid:24)j = j1 j2 jn X X X = sgn((cid:27))ai1j(cid:27)(1)ai2j(cid:27)(2) (cid:1)(cid:1)(cid:1) ainj(cid:27)(n)(cid:24)j1 ^(cid:24)j2 ^ (cid:1)(cid:1)(cid:1) ^(cid:24)jn = aIJ(cid:24)J ; 16j1<j2<(cid:1)(cid:1)(cid:1)<jn6n(cid:27)2Sn J where aIJ is (n(cid:2)n)-minor of (aij) pla ed at (i1;i2;:::;in) rows and (j1;j2;:::;jn) olumns, and J runs through all in reasing index olle tions of the length #J =n. P Exer i e 2.21. Let jIj = i(cid:23) denote a weight of the in reasing index olle tion I = (i1;i2;:::;in) of length #I = n. (cid:23) Che k that eI ^eIb=((cid:0)1)jIj+12#I(1+#I)(cid:1)e1^e2^ (cid:1)(cid:1)(cid:1) ^ed (8) def for any two omplementary index olle tions I and Ib= f1;2; ::: ;ng n I. Example 2.22: Lapla e relations via grassmannian polynomials. Let us take two omplementary index olle tions I and Xd def Ib = f1;2; ::: ;ng n I and do a base hange ei = aij(cid:24)j in the identity (8). Its left side eI ^eIbturns to j=1 (cid:18) (cid:19) (cid:18) (cid:19) X aIK(cid:24)K ^ X aLIb(cid:24)L =((cid:0)1)21#I(1+#I) X ((cid:0)1)jKjaIKaIbKb(cid:24)1^(cid:24)2^ (cid:1)(cid:1)(cid:1) ^(cid:24)d ; K: L: K: #K=#I #L=(d(cid:0)#I) #K=#I where Kb =f1;2; ::: ;dgnK. The right side of (8) gives ((cid:0)1)12#I(1+#I)((cid:0)1)jIjdet(aij)(cid:24)1^(cid:24)2^ (cid:1)(cid:1)(cid:1) ^(cid:24)d. So, for any any olle tion I of rows in any square matrix (aij) the following relation holds: X jKj+jIj ((cid:0)1) aIKbaIK =det(aij); (9) K: #K=#I def 4 where baIK = aIbKb denotes the (d(cid:0)n)(cid:2)(d(cid:0)n) - minor whi h is omplementary to aIK and the summation runs over all (n(cid:2)n) - minors aIK ontained in the rows (i1;i2;:::;in). If we take I\J 6=?, then starting from eI ^eJ =0 instead of (8) we get by the same al ulation the relation X jKj+jIj ((cid:0)1) aIKbaJK =0; (10) K: #K=#I The identities (9) and (10) areknown asLapla e relations. Let us (cid:12)x, say lexi ogra(cid:12) al,orderon the set of indi es I and (cid:0)arrangeall(n(cid:2)(cid:1)n)-minorsaIJ as(cid:0)nd(cid:1)(cid:2)(cid:0)nd(cid:1) -matrixA(n) d=ef (aIJ). IfwedenotebyAb(n) amatrixwhose(IJ)-entryequals ((cid:0)1)jIj+jJjbaJI , then all the Lapla e relations are expressed by the single matrix equality A(n)(cid:1)Ab(n) =det(aij)(cid:1)E. Example 2.23:Redu tionofgrassmannianquadrati forms. Any homogeneousgrassmannianpolynomial ofdegree2 anbe written as (cid:24)1^(cid:24)2+(cid:24)3^(cid:24)4+ (cid:1)(cid:1)(cid:1) +(cid:24)r(cid:0)1^(cid:24)r (11) 5 in some base (over any (cid:12)eld k). Namely, we an suppose that our grassmannianquadrati form is q(e)=e1^((cid:11)2e2+ (cid:1)(cid:1)(cid:1) +(cid:11)nen)+(terms without e1) def where (cid:11)2 6=0and (cid:24)2 = (cid:11)2e2+ (cid:1)(cid:1)(cid:1) +(cid:11)nen does not ontain e1, that is it an be in luded in the new base f(cid:16)1;(cid:16)2;:::;(cid:16)ng (cid:0)1 with (cid:16)i = ei for i 6= 2. After the substitution e2 = (cid:11)2 ((cid:24)2(cid:0)(cid:11)3(cid:16)3(cid:0) (cid:1)(cid:1)(cid:1) (cid:0)(cid:11)n(cid:16)n), ei = (cid:16)i for i 6= 2, we an write q as q((cid:16)) = (cid:16)1 ^(cid:16)2 +(cid:16)2 ^((cid:12)3(cid:16)3+ (cid:1)(cid:1)(cid:1) +(cid:12)n(cid:16)n)+(terms without (cid:16)1 and (cid:16)2). So, in the next new base: f(cid:24)1;(cid:24)2;:::;(cid:24)ng with (cid:24)1 =(cid:16)1(cid:0)(cid:12)3(cid:16)3(cid:0) (cid:1)(cid:1)(cid:1) (cid:0)(cid:12)n(cid:16)n, (cid:24)i =(cid:16)i for i6=1 our q turns to q((cid:16))=(cid:24)1^(cid:24)2+(terms without (cid:24)1 and (cid:24)2) and this pro edure an be repeated indu tively for the remaining terms. P Exer i e 2.24. Let A=(aij) be a skewsymmetri matrix (i. e. aij =(cid:0)aji) and q(e)= aijei^ej be a grassmannian ij quadrati form. Show that in the representation (11) the number r doesn't depend on the base hoi e and equals rkA. (In parti ular, rkA is always even.) 4 i. e. sitting in the omplementaryrows and olumns 5 maybe after appropriate renumberingof thebase ve tors Kernel of le ture ‚2, page 6 Commutative And Homologi al Algebra by ALG Kernel of le ture ‚3 1 Polarizations and ontra ions for (skew)polynomials (cid:10)n (Skew)symmetri tensors. A symmetri group Sn a ts on V permuting fa tors in the de omposable def tensors: (cid:27)(v1(cid:10)v2(cid:10) (cid:1)(cid:1)(cid:1) (cid:10)vn) = v(cid:27)(1) (cid:10)v(cid:27)(2) (cid:10)(cid:1)(cid:1)(cid:1)(cid:10)v(cid:27)(n) 8(cid:27)2Sn . Subspa es n (cid:10)n Skew V =ft 2V j (cid:27)(t) =sgn((cid:27))(cid:1)t 8(cid:27)2Sn g n (cid:10)n Sym V =ft 2V j(cid:27)(t) =t 8(cid:27)2Sn g are alled the spa es of skew symmetri and symmetri tensors. Claim 3.1. If har(k)=0, then, restri ting the anoni al fa torization maps: V(cid:10)n (cid:25)sk-ew (cid:3)nV , V(cid:10)n (cid:25)sy-m SnV , onto the spa es of (skew)symmetri tensors, we get anoni al isomorphisms: SkewnV (cid:25)sk-ew (cid:3)nV and SymnV (cid:25)sy-m SnV : (12) n Proof. In the skew symmetri ase, a base of Skew V is formed by the tensors X def ehi1;i2;:::;ini = sgn((cid:27))(cid:1)ei(cid:27)(1) (cid:10)ei(cid:27)(2) (cid:10) (cid:1)(cid:1)(cid:1) (cid:10)ei(cid:27)(n) (cid:27)2Sn (sum(cid:0)of all the te(cid:1)nsor monomials sent to the basi Grassmannian monomial eI = ei1 ^ei2 ^ (cid:1)(cid:1)(cid:1) ^ein by (cid:25)skew). So, (cid:25)skew ehi1;i2;:::;ini =n!eI.Inthesymmetri ase,letuswPritee[m1;m2;:::;md℄forthesumofalltensormonomials ontaining m1 fa tors e1, m2 fa tors e2, ::: , md fa tors ed, where m(cid:23) =n. These monomials form one Sn-orbit, whi h onsists (cid:23) n! m1 m2 md of m1!m2!(cid:1)(cid:1)(cid:1)md! elementsand olle tsall the de (cid:0)omposable(cid:1)tensorssentto e1 e2 (cid:1)(cid:1)(cid:1) ed by (cid:25)sym. Asabove,the tensors n n! m1 m2 md e[m1;m2;:::;md℄ form a base for Sym V and (cid:25)sym e[i1;i2;:::;in℄ = m1!m2!(cid:1)(cid:1)(cid:1)md!e1 e2 (cid:1)(cid:1)(cid:1) ed . (cid:3) n Exer i e 3.2. Verify that the above sums ehi1;i2;:::;ini and e[m1;m2;:::;md℄ really give the bases for Sym V (over any (cid:12)eld ofan arbitrary hara teristi ).Alsonotethatif har(k)>0dividesn, thenall thesebasi (skew)symmetri tensors are annihilated by fa torization through (skew)symmetri relations. (cid:10)n (n) n n (n) Exer i e 3.3. Verify that if har(k) = 0, then V = Iskew (cid:8) Skew V = Sym V (cid:8) Isym, where the proje tion V(cid:10)n -- SymnV along Is(ynm) is given by the symmetrization map 1 X symn : (cid:28) 7(cid:0)! (cid:27)((cid:28)) n! (cid:27)2Sn and the proje tion V(cid:10)n -- SkewnV along I(n) given by the alternation map skew 1 X altn : (cid:28) 7(cid:0)! sgn((cid:27))(cid:1)(cid:27)((cid:28)): n! (cid:27)2Sn Polarization of (skew)polynomials. The inverse maps to the isomorphisms (12) take 1 ei1 ^ei2 ^ (cid:1)(cid:1)(cid:1) ^ein 7(cid:0)! (cid:1)ehi1;i2;:::;ini n! (13) m1 m2 md m1!m2! (cid:1)(cid:1)(cid:1) md! e1 e2 (cid:1)(cid:1)(cid:1) ed 7(cid:0)! (cid:1)e[m1;m2;:::;md℄ : n! The both maps are alled omplete polarizations of (skew)polynomials and are denoted by f 7(cid:0)!pl(f). Example 3.4: (skew)polynomials and (skew)symmetri multilinear forms. Full polarization pl(f) of a (skew) homogeneous degree n polynomial f of one argument on V an be onsidered as a multilinear form of n arguments on V. It sends (v1;v2;:::;vn)tothefull ontra tionfe(v1;v2;:::;vn)d=ef h(cid:10)v1(cid:10)v2(cid:10) (cid:1)(cid:11)(cid:1)(cid:1) (cid:10)(cid:10)vn; p(cid:11)l(f)iandhasth(cid:10)esames(cid:11)ymm(cid:10)etryprope(cid:11)r- (cid:10)n (cid:3)(cid:10)n (cid:0)1 tiesasf,be auseforall(cid:27)2Sn,t2V ,(cid:24)2V wehave (cid:27)(t); (cid:27)((cid:24)) = t; (cid:24) ,whi himplies (cid:27)(t); (cid:24) = t; (cid:27) ((cid:24)) . 2 (cid:3) Exer i e 3.5. Che k that for a symmetri quadrati form q(x)2S V we have q(x+y)(cid:0)q(x(cid:0)y) q(x+y)(cid:0)q(x)(cid:0)q(y) 1 dXimV q qe(x;y)= = = y(cid:23) : 4 2 2 x(cid:23) (cid:23)=1 1 warning!!!In this le ture we suppose that theground(cid:12)eld k is algebrai ally losed and has zero hara teristi .

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.