ebook img

Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares PDF

473 Pages·2017·6.54 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares

Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares Stephen Boyd Department of Electrical Engineering Stanford University Lieven Vandenberghe Department of Electrical and Computer Engineering University of California, Los Angeles University Printing House, Cambridge CB2 8BS, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia 314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India 79 Anson Road, #06–04/06, Singapore 079906 Cambridge University Press is part of the University of Cambridge. It furthers the University’s mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence. www.cambridge.org Information on this title: www.cambridge.org/9781316518960 DOI: 10.1017/9781108583664 © Cambridge University Press 2018 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2018 Printed in the United Kingdom by Clays, St Ives plc, 2018 A catalogue record for this publication is available from the British Library. ISBN 978-1-316-51896-0 Hardback Additional resources for this publication at www.cambridge.org/IntroAppLinAlg Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. For Anna, Nicholas, and Nora Dani¨el and Margriet Contents Preface xi I Vectors 1 1 Vectors 3 1.1 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Vector addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3 Scalar-vector multiplication . . . . . . . . . . . . . . . . . . . . . . . . 15 1.4 Inner product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5 Complexity of vector computations . . . . . . . . . . . . . . . . . . . . 22 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2 Linear functions 29 2.1 Linear functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2 Taylor approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.3 Regression model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3 Norm and distance 45 3.1 Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2 Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.3 Standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.4 Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.5 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4 Clustering 69 4.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.2 A clustering objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.3 The k-means algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 viii Contents 5 Linear independence 89 5.1 Linear dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.2 Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.3 Orthonormal vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.4 Gram–Schmidt algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 97 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 II Matrices 105 6 Matrices 107 6.1 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.2 Zero and identity matrices . . . . . . . . . . . . . . . . . . . . . . . . 113 6.3 Transpose, addition, and norm . . . . . . . . . . . . . . . . . . . . . . 115 6.4 Matrix-vector multiplication . . . . . . . . . . . . . . . . . . . . . . . . 118 6.5 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 7 Matrix examples 129 7.1 Geometric transformations . . . . . . . . . . . . . . . . . . . . . . . . 129 7.2 Selectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.3 Incidence matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7.4 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 8 Linear equations 147 8.1 Linear and affine functions . . . . . . . . . . . . . . . . . . . . . . . . 147 8.2 Linear function models . . . . . . . . . . . . . . . . . . . . . . . . . . 150 8.3 Systems of linear equations . . . . . . . . . . . . . . . . . . . . . . . . 152 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 9 Linear dynamical systems 163 9.1 Linear dynamical systems . . . . . . . . . . . . . . . . . . . . . . . . . 163 9.2 Population dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 9.3 Epidemic dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 9.4 Motion of a mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 9.5 Supply chain dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 10 Matrix multiplication 177 10.1 Matrix-matrix multiplication . . . . . . . . . . . . . . . . . . . . . . . 177 10.2 Composition of linear functions . . . . . . . . . . . . . . . . . . . . . . 183 10.3 Matrix power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 10.4 QR factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 Contents ix 11 Matrix inverses 199 11.1 Left and right inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 11.2 Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 11.3 Solving linear equations . . . . . . . . . . . . . . . . . . . . . . . . . . 207 11.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 11.5 Pseudo-inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 III Least squares 223 12 Least squares 225 12.1 Least squares problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 12.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 12.3 Solving least squares problems . . . . . . . . . . . . . . . . . . . . . . 231 12.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 13 Least squares data fitting 245 13.1 Least squares data fitting . . . . . . . . . . . . . . . . . . . . . . . . . 245 13.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 13.3 Feature engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 14 Least squares classification 285 14.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 14.2 Least squares classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . 288 14.3 Multi-class classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 15 Multi-objective least squares 309 15.1 Multi-objective least squares . . . . . . . . . . . . . . . . . . . . . . . 309 15.2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 15.3 Estimation and inversion . . . . . . . . . . . . . . . . . . . . . . . . . 316 15.4 Regularized data fitting . . . . . . . . . . . . . . . . . . . . . . . . . . 325 15.5 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 16 Constrained least squares 339 16.1 Constrained least squares problem . . . . . . . . . . . . . . . . . . . . 339 16.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 16.3 Solving constrained least squares problems . . . . . . . . . . . . . . . . 347 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 x Contents 17 Constrained least squares applications 357 17.1 Portfolio optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 17.2 Linear quadratic control . . . . . . . . . . . . . . . . . . . . . . . . . . 366 17.3 Linear quadratic state estimation . . . . . . . . . . . . . . . . . . . . . 372 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 18 Nonlinear least squares 381 18.1 Nonlinear equations and least squares . . . . . . . . . . . . . . . . . . 381 18.2 Gauss–Newton algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 386 18.3 Levenberg–Marquardt algorithm . . . . . . . . . . . . . . . . . . . . . 391 18.4 Nonlinear model fitting . . . . . . . . . . . . . . . . . . . . . . . . . . 399 18.5 Nonlinear least squares classification . . . . . . . . . . . . . . . . . . . 401 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 19 Constrained nonlinear least squares 419 19.1 Constrained nonlinear least squares . . . . . . . . . . . . . . . . . . . . 419 19.2 Penalty algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421 19.3 Augmented Lagrangian algorithm . . . . . . . . . . . . . . . . . . . . . 422 19.4 Nonlinear control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434 Appendices 437 A Notation 439 B Complexity 441 C Derivatives and optimization 443 C.1 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443 C.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447 C.3 Lagrange multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448 D Further study 451 Index 455 Preface This book is meant to provide an introduction to vectors, matrices, and least squares methods, basic topics in applied linear algebra. Our goal is to give the beginningstudent,withlittleornopriorexposuretolinearalgebra,agoodground- ing in the basic ideas, as well as an appreciation for how they are used in many applications, including data fitting, machine learning and artificial intelligence, to- mography, navigation, image processing, finance, and automatic control systems. The background required of the reader is familiarity with basic mathematical notation. We use calculus in just a few places, but it does not play a critical role and is not a strict prerequisite. Even though the book covers many topics that are traditionally taught as part of probability and statistics, such as fitting mathematical models to data, no knowledge of or background in probability and statistics is needed. Thebookcoverslessmathematicsthanatypicaltextonappliedlinearalgebra. We use only one theoretical concept from linear algebra, linear independence, and only one computational tool, the QR factorization; our approach to most applica- tions relies on only one method, least squares (or some extension). In this sense we aim for intellectual economy: With just a few basic mathematical ideas, con- cepts, and methods, we cover many applications. The mathematics we do present, however, is complete, in that we carefully justify every mathematical statement. In contrast to most introductory linear algebra texts, however, we describe many applications, including some that are typically considered advanced topics, like document classification, control, state estimation, and portfolio optimization. Thebookdoesnotrequireanyknowledgeofcomputerprogramming,andcanbe usedasaconventionaltextbook,byreadingthechaptersandworkingtheexercises that do not involve numerical computation. This approach however misses out on oneofthemostcompellingreasonstolearnthematerial: Youcanusetheideasand methodsdescribedinthisbooktodopracticalthingslikebuildapredictionmodel fromdata,enhanceimages,oroptimizeaninvestmentportfolio. Thegrowingpower of computers, together with the development of high level computer languages and packages that support vector and matrix computation, have made it easy to use the methods described in this book for real applications. For this reason we hope that every student of this book will complement their study with computer programming exercises and projects, including some that involve real data. This book includes some generic exercises that require computation; additional ones, and the associated data files and language-specific resources, are available online. xii Preface Ifyoureadthewholebook,worksomeoftheexercises,andcarryoutcomputer exercises to implement or use the ideas and methods, you will learn a lot. While there will still be much for you to learn, you will have seen many of the basic ideas behind modern data science and other application areas. We hope you will be empowered to use the methods for your own applications. The book is divided into three parts. Part I introduces the reader to vectors, and various vector operations and functions like addition, inner product, distance, andangle. Wealsodescribehowvectorsareusedinapplicationstorepresentword counts in a document, time series, attributes of a patient, sales of a product, an audio track, an image, or a portfolio of investments. Part II does the same for matrices, culminating with matrix inverses and methods for solving linear equa- tions. Part III, on least squares, is the payoff, at least in terms of the applications. We show how the simple and natural idea of approximately solving a set of over- determined equations, and a few extensions of this basic idea, can be used to solve many practical problems. The whole book can be covered in a 15 week (semester) course; a 10 week (quarter)coursecancovermostofthematerial,byskippingafewapplicationsand perhapsthelasttwochaptersonnonlinearleastsquares. Thebookcanalsobeused forself-study, complementedwithmaterialavailableonline. Bydesign, thepaceof thebookacceleratesabit,withmanydetailsandsimpleexamplesinpartsIandII, and more advanced examples and applications in part III. A course for students withlittleornobackgroundinlinearalgebracanfocusonpartsIandII,andcover just a few of the more advanced applications in part III. A more advanced course onappliedlinearalgebracanquicklycoverpartsIandIIasreview, andthenfocus on the applications in part III, as well as additional topics. We are grateful to many of our colleagues, teaching assistants, and students for helpful suggestions and discussions during the development of this book and the associated courses. We especially thank our colleagues Trevor Hastie, Rob Tibshirani,andSanjayLall,aswellasNickBoyd,fordiscussionsaboutdatafitting and classification, and Jenny Hong, Ahmed Bou-Rabee, Keegan Go, David Zeng, andJaehyunPark,Stanfordundergraduateswhohelpedcreateandteachthecourse EE103. We thank David Tse, Alex Lemon, Neal Parikh, and Julie Lancashire for carefully reading drafts of this book and making many good suggestions. Stephen Boyd Stanford, California Lieven Vandenberghe Los Angeles, California

Description:
squares methods, basic topics in applied linear algebra. beginning student, with little or no prior exposure to linear algebra, a good algorithm to 'discover' which customers have a swimming pool, an electric Bs + Ce = d,.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.