ebook img

Interseismic strain accumulation across the central North Anatolian Fault from iteratively ... PDF

20 Pages·2016·5.96 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Interseismic strain accumulation across the central North Anatolian Fault from iteratively ...

Journal of Geophysical Research: Solid Earth RESEARCHARTICLE Interseismic strain accumulation across the central North 10.1002/2016JB013108 Anatolian Fault from iteratively unwrapped InSAR measurements KeyPoints: •Newiterativephase-unwrapping procedureimprovescoverageof Ekbal Hussain1,Andrew Hooper1,TimJ. Wright1,RichardJ. Walters2,andDavidP.S. Bekaert3,4 InSARmeasurements •Surfacevelocitiesatthecentral 1COMET,SchoolofEarthandEnvironment,UniversityofLeeds,Leeds,UK,2COMET,DepartmentofEarthSciences, NorthAnatolianFaultshoweastward decreaseinsliprate DurhamUniversity,Durham,UK,3JetPropulsionLaboratory,CaliforniaInstituteofTechnology,Pasadena,California,USA, •FaultcreepnearIsmetpasaisreleasing 4FormerlyatCOMET,UniversityofLeeds,Leeds,UK only30-40%oflong-termstraininthe shallowcrust Abstract TheNorthAnatolianFault(NAF)isamajortectonicfeatureintheMiddleEastandisthemost SupportingInformation: activefaultinTurkey.ThecentralportionoftheNAFisaregionofGlobalNavigationSatelliteSystems •SupportingInformationS1 (GNSS)scarcity.Previousstudiesofinterseismicdeformationhavefocusedontheaseismiccreepnearthe townofIsmetpasausingradardataacquiredinasingleline-of-sightdirection,requiringseveralmodeling Correspondenceto: assumptions.WehavemeasuredinterseismicdeformationacrosstheNAFusingbothascendingand E.Hussain, descendingdatafromtheEnvisatsatellitemissionacquiredbetween2003and2010.Ratherthanrejecting [email protected] incorrectlyunwrappedareasintheinterferograms,wedevelopanewiterativeunwrappingprocedure forsmallbaselineinterferometricsyntheticapertureradar(InSAR)processingthatexpandsthespatial Citation: coverage.Ourmethodcorrectsunwrappingerrorsiterativelyandincreasestherobustnessofthe Hussain,E.,A.Hooper,T.J.Wright, unwrappingprocedure.WeremovelongwavelengthtrendsfromtheInSARdatausingGNSSobservations R.J.Walters,andD.P.S.Bekaert(2016), Interseismicstrainaccumulationacross anddeconvolvetheInSARvelocitiesintofault-parallelmotion.Profilesoffault-parallelvelocityreveala thecentralNorthAnatolianFault systematiceastwarddecreaseinfaultslipratefrom30mm/yr(25–34,95%confidenceinterval(CI))to fromiterativelyunwrappedInSAR 21mm/yr(14–27,95%CI)overadistanceof∼200km.Directoffsetmeasurementsacrossthefaultreveal measurements,J.Geophys.Res.Solid Earth,121,doi:10.1002/2016JB013108. faultcreepalonga∼130kmsectionofthecentralNAF,withanaveragecreeprateof8±2mm/yranda maximumcreeprateof14±2mm/yrlocated∼30kmeastofIsmetpasa.Asfaultcreepisreleasingonly 30–40%ofthelong-termstrainintheshallowcrust,thefaultisstillcapableofproducinglarge,damaging Received20APR2016 Accepted27NOV2016 earthquakesinthisregion. Acceptedarticleonline7DEC2016 1.Introduction TheNorthAnatolianFault(NAF)isamajorcontinentalright-lateraltransformfaultlocatedinnorthernTurkey. TogetherwiththeEastAnatolianFault,itfacilitatesthewestwardmotionofAnatolia,caughtintheconver- gencezoneoftheEurasianplatewiththeArabianplate[McKenzie,1972].Sincethe1939M 7.9Erzincan w earthquakeineasternTurkey,theNAFhasrupturedinasequenceoflarge(M >6.7)earthquakeswithadom- w inantwestwardprogressioninseismicity[Barka,1996;Steinetal.,1997].Steinetal.[1997]andHubert-Ferrari etal.[2000]haveinterpretedthissequencetoresultfromstresstransferalongstrike,whereoneearthquake bringstheadjacentsegmentclosertofailure. InordertounderstandtherolethattheNAFplaysinregionaltectonicsandseismichazard,therehavebeen numerousestimatesofthefaultslipratefortheNAFusingpresent-daydeformationmeasuredwithGlobal NavigationSatelliteSystems(GNSS)[e.g.,Straubetal.,1997;Reilingeretal.,2006;Ergintavetal.,2009]oroffset geologicalfeatures[e.g.,Hubert-Ferrarietal.,2002;Puccietal.,2008;Kozacietal.,2009].Therehavealsobeen severalinterferometricsyntheticapertureradar(InSAR)-derivedestimatesofthefaultsliprate,whichhave focusedonthewesternoreasternregionsoftheNAFwheretheInSARcoherenceisbetter[e.g.,Wrightetal., 2001a;Cakiretal.,2005;Waltersetal.,2011;Kanekoetal.,2013;Cakiretal.,2014;Cetinetal.,2014;Waltersetal., ©2016.TheAuthors. Thisisanopenaccessarticleunderthe 2014;CavaliéandJónsson,2014;Hussainetal.,2016]. termsoftheCreativeCommons AttributionLicense,whichpermitsuse, However,sliprateestimatesforthecentralNAFarerelativelypoorlyconstrained,withsparseGNSSdatanorth distributionandreproductioninany ofthisportionofthefault(Figure1)andwideranginggeologicalandgeodeticestimates.Geologicalfault medium,providedtheoriginalworkis properlycited. slipraterangesfromaslowas5mm/yrtoashighas44mm/yr[e.g.,BarkaandHancock,1984;Barka,1992; HUSSAINETAL. INTERSEISMICCENTRALNAF 1 Journal of Geophysical Research: Solid Earth 10.1002/2016JB013108 Figure1.(a)ThecentralsectionoftheNorthAnatolianFault.TheredarrowsarepublishedGNSSvelocitiesfromthe GlobalStrainRateModelproject[Kreemeretal.,2014].Thecoloredsectionsindicatepreviousrupturesalongthissection ofthefault.(b)TheEnvisatsatellitedatatracksusedinthisstudy.Descendingtracksarecoloredinredandascending tracksinblue. Hubert-Ferrarietal.,2002;Kozacietal.,2007;Kozacietal.,2009],whileGNSSstudiesestimatetheslipratefor theregiontoarangeof17–34mm/yr[e.g.,Oraletal.,1993;Noomenetal.,1996;Ayhanetal.,2002;Reilinger etal.,2006]. Shallowaseismicsliponthefaultplane,i.e.,faultcreep,onthecentralportionoftheNAFwasfirstdocumented byAmbraseys[1970],whoobservedincreasingdisplacementsofawallthatwasbuiltacrossthefaultnear thetownofIsmetpasa,overmultipleyears.Ambraseys[1970]estimatedafaultcreeprateof∼20mm/yrfor thetimeperiod1955–1969.Sincethisoriginalinvestigation,thefaultcreephasbeenthefocusofnumerous geodeticstudies[e.g.,Cakiretal.,2005;Kutogluetal.,2010;Karabacaketal.,2011;Ozeneretal.,2013;Cetinetal., 2014].Cetinetal.[2014]suggestedthatthefaultcreepratehasbeendecayingsincethefirstmeasurementsin 1970toacurrentsteadystatevalueof∼6–8mm/yr.MostpreviousInSARstudiesinthisregionhaveonlyused satellitedatafromasingle-lookdirection,e.g.,theuseofdescendingEnvisatdatabyCakiretal.[2005]and Cetinetal.[2014].Kanekoetal.[2013]usedacombinationofascendingtracksfromtheALOSsatelliteandone descendingframefromEnvisattrack207,limitingtheirobservationalperiodto2007–2011.Theysuggested thataseismiccreepatarateof∼9mm/yrislimitedtotheupper5.5–7kmofthecrust,whichexhibitsvelocity strengtheningfrictionalbehavior. Recently,Roussetetal.[2016]usedhigh-resolutionCOSMO-SkyMedsatellitedataspanningthetimewindow betweenJuly2013andMay2014toshowevidenceofperiodsofelevatedfaultcreepspanningamonth withtotalslipof20mm,indicatingthatepisodiccreepeventsmaybeanimportantmechanismproducing aseismicslip. InthisstudyweuseamorecompletedatasetcoveringtheentirecentralNAFinbothascendinganddescend- inggeometriesandspanningthe∼8yeartimewindowbetween2003and2010.Weremovelongwavelength trendsfromtheInSARdatausingpublishedGNSSvelocities[Kreemeretal.,2014]anddeconvolvetheInSAR line-of-sightvelocitiesintofault-parallelandverticalmotion. Weusesimpleelasticdislocationmodelstoestimategeodeticfaultslipratesandlockingdepthsandinves- tigatethespatialvariationoffaultcreepalongthecentralNAF.Wealsodevelopandapplyanewiterative unwrappingalgorithmthatminimizesunwrappingerrorsduringtheInSARprocessing. HUSSAINETAL. INTERSEISMICCENTRALNAF 2 Journal of Geophysical Research: Solid Earth 10.1002/2016JB013108 Table1.DataCoverageforEachEnvisatTrackUsedinThisStudy Track Geometry TimeSpana No.ofImages TotalIntsCreated IntsUsed 250 Descending 2003/12/12–2010/7/23 38 115 59 479 Descending 2003/12/28–2010/7/4 30 90 50 207 Descending 2004/1/13–2010/9/28 40 88 53 436 Descending 2003/7/3–2010/3/18 36 96 65 28 Ascending 2004/7/28–2010/7/7 14 30 21 71 Ascending 2004/1/3–2009/8/29 19 48 29 343 Ascending 2004/6/10–2010/4/15 14 27 20 aDatesareformattedasyear/month/day. 2.InSARProcessing Ourdatasetconsistsof191Envisatimagesfromfourdescendingtracks(250,479,207,and436)andthree ∘ ∘ ascendingtracks(28,71,and343)(Figure1b).TogetherthesecoverthecentralNAFbetween31.5 Eand35 E, andspanthetimeinterval2003–2010.DetailsoftheprocesseddataforeachtrackaregiveninTable1. WefocustheEnvisatimagesusingROI_PAC[Rosenetal.,2004]andusetheDORISsoftware[Kampesetal.,2003] toconstruct494interferograms.Foreachtrackweproducearedundantconnectednetworkofinterferograms whileminimizingthetemporalseparationbetweenacquisitionsandthespatialseparationofthesatellite(the perpendicularbaseline)(FigureS1inthesupportinginformation).Wecorrecttopographiccontributionsto theradarphaseusingthe90mSRTMDigitalElevationModel[Farretal.,2007]andaccountfortheknown oscillatordriftforEnvisataccordingtoMarinkovicandLarsen[2013].Weunwraptheinterferometricphase usinganewiterativeunwrappingprocessdescribedinsection3. WeapplytheStaMPS(StanfordMethodforPersistentScatterers)smallbaselinetimeseriestechnique[Hooper, 2008;Hooperetal.,2012]toremoveincoherentpixelsandreducethenoisecontributiontothedeformation signal,byselectingonlythosepixelsthathavelowphasenoiseonaverageinthesmallbaselineinterferograms usedintheanalysis. Theatmosphericcontributionisoftenthelargestsourceoferrorinradarinterferograms[e.g.,Doinetal.,2009; Waltersetal.,2013;Jolivetetal.,2014;Bekaertetal.,2015a].Tomitigatethisweestimatedatropospherecorrec- tionusingauxiliarydatafromtheERA-Interimglobalatmosphericmodelreanalysisproduct[Deeetal.,2011]. WeusetheTRAIN(ToolboxforReducingAtmosphericInSARNoise)softwarepackage[Bekaertetal.,2015c]to correcteachindividualinterferogramfortroposphericnoise.Afterremovingaplanarphaserampfromeach interferogram,theERA-Icorrectionreducesthestandarddeviationofourtracksby8%onaverage.Theaver- agereductioninstandarddeviationissmallaftercorrection,implyingthatsomeresidualatmosphericsignals remainintheinterferogramsaftertheERA-Icorrection.Theaveragereductioninstandarddeviationforeach trackare10%fortrack207,1%fortrack250,2%fortrack436,12%fortrack479,10%fortrack28,16%for track71,and6%fortrack343(FiguresS2andS3). Ourfinalredundantsmallbaselinenetworksconsistofatotalof297interferogramsovertheseventracks (FigureS1).Weusethesenetworkstocalculatetheaverageline-of-sight(LOS)velocitymapforeachtrack. Anynontectoniclongwavelengthsignals(>100km),includingthoseduetoorbitalerrors,areeffectively removedfromeachtrackwhentheInSARline-of-sight(LOS)velocitiesaretransformedintoaEurasia-fixed GNSSreferenceframe(detailsinsection4).Theuncertaintiesonthefinalvelocityforeachpixelarecalcu- latedusingbootstrapresampling[EfronandTibshirani,1986]andarepresentedatthe1sigmalevelinthe followingwork. WecalculatetheLOSvariance-covariancematrixofthenoiseforeachInSARtrackbycomputingtheaverage radialcovarianceversusdistance(autocorrelation)usingthevelocitiesina50kmby50kmregion∼250kmto thesouthofthefault.Thisregionisassumedtohavenotectonicdeformationandcontainsonlyatmospheric noise.Wefitanexponentialcovariancefunction[e.g.,LohmanandSimons,2005;Parsonsetal.,2006],C(r),as C(r)=𝜎2e−𝜆r, (1) HUSSAINETAL. INTERSEISMICCENTRALNAF 3 Journal of Geophysical Research: Solid Earth 10.1002/2016JB013108 Table2.TheCenterofthe50kmby50kmRegionUsedtoEstimatetheNoise CovarianceFunctionParameters Track Center(Lon,Lat) Variance,𝜎2(mm/yr)2 CharacteristicLength,𝜆(km) 207 33∘E,39.5∘N 8.91 53 250 31.75∘E,39.5∘N 4.95 27 436 34∘E,39.5∘N 3.91 22 479 32.5∘E,39.5∘N 2.88 10 28 34.5∘E,39.5∘N 6.12 25 71 33.2∘5E,39.5∘N 4.00 19 343 32.5∘E,39.5∘N 1.00 4 whereweestimatethevariance(𝜎2)andthecharacteristiclength(𝜆),whichgivethespatialcorrelationof noiseasafunctionofdistancebetweenpixels(r).Ourvaluesforeachtrackandthecenteroftheregion usedtocalculatethecovariancefunctionareshowninTable2.Thesecovariancesareusedinsection5when modelingthehorizontalvelocitiesandfaultcreeprates. 3.IterativePhaseUnwrapping 3.1.MethodDescription Phase unwrapping is the process of recovering continuous phase values from phase data that are mea- suredmodulo2𝜋radians(wrappeddata)[GhigliaandPritt,1998].Original2-Dphase-unwrappingalgorithms unwrappedthephaseofeachindividualinterferogramindependently[e.g.,Goldsteinetal.,1988;Costantini, 1998; ZebkerandLu, 1998]. However, a time series of selected interferogram pixels can be considered a 3-D data set, the third dimension being that of time.HooperandZebker [2007] showed that treating the unwrappingproblemasone3-Dproblemasopposedtoaseriesof2-Dproblemsleadstoanimprovement intheaccuracyofthesolutioninasimilarwaytowhich2-Dunwrappingprovidesanimprovementover one-dimensionalspatialmethods. Fully 3-D phase-unwrapping algorithms commonly assume that the phase difference between neighbor- ingpixelsisgenerallylessthanhalfaphasecycle(2𝜋radians)inalldimensions[HooperandZebker,2007]. However,duetoatmosphericdelays,InSARsignalsareeffectivelyuncorrelatedintime,violatingthisassump- tion.Otherunwrappingalgorithmsrequiretheassumptionofatemporalparametricfunction,suchasalinear phaseevolutionintime[Ferrettietal.,2001],tounwrapthephasesignals. Thestandardunwrapping algorithmused intheStanford Methodfor PersistentScatterers(StaMPS) soft- ware[Hooper,2010]usestheactualphaseevolutionintimetoguideunwrappinginthespatialdimension without assuming a particular temporal evolution model. The phase difference between nearby pixels (double-differencephase)isfilteredintimetogiveanestimateoftheunwrappeddisplacementphaseforeach satelliteacquisitionandanestimateofthephasenoise.Thisisusedtoconstructprobabilitydensityfunctions foreachunwrappeddouble-differencephaseineveryinterferogram.Anefficientalgorithm(SNAPHU)[Chen andZebker,2000,2001]thensearchesforthesolutioninspacethatmaximizesthetotaljointprobability,i.e., minimizesthetotal‘cost’. Foraconnectednetworkofsmallbaselineinterferograms,thephaseunwrappingofindividualinterferograms canbecheckedfornetworkconsistencybysummingthephasearoundclosedinterferometricloops[e.g.,Pepe andLanari,2006;Biggsetal.,2007;Cavaliéetal.,2007;Jolivetetal.,2011](Figure2).Inthestandardunwrapping approachusedinStaMPS,anyinterferogramsidentifiedtohavelargeunwrappingerrorsareremovedfrom thesmallbaselinenetwork,whichcanresultinlossofinformationand/orreductioninnetworkredundancy. NotethatsomeotherInSARpractitioners[e.g.,Biggsetal.,2007;Wangetal.,2009;Waltersetal.,2011]generally donotdropbadlyunwrappedinterferograms,butattempttocorrectunwrappingerrorsbymanuallyadding integermultiplesof2𝜋tobadlyunwrappedregionsofpixels.However,thisisatime-consumingprocess. In our method, we iterate the standard StaMPS unwrapping procedure while calculating the sum of the unwrappedphasearoundclosedloopsforeverypixelineveryinterferogram,usingthefollowingequation: ∑n−1 UW{𝜙 −𝜙}+𝜖=0, (2) (i+1)modn i i=0 HUSSAINETAL. INTERSEISMICCENTRALNAF 4 Journal of Geophysical Research: Solid Earth 10.1002/2016JB013108 Figure2.Asimpleinterferometricloopconsistingofthreeacquisitions(redpoints)withphase𝜙 .Theinterferograms 0∶2 aredenotedbythebluelinesandarethedifferenceinphasefortwoacquisitions.UWistheStaMPSunwrapping operator,seetextfordetails.Foreverypixelunwrappedcorrectlyineachinterferogramthephasesumaroundtheloop isequaltozero,i.e.,UW(𝜙 −𝜙 )+UW(𝜙 −𝜙 )+UW(𝜙 −𝜙 )=0. 1 0 2 1 0 2 whereUWistheStaMPSunwrappingoperator,nisthenumberofinterferogramsonthepatharoundaninter- ferometricloop,(𝜙 −𝜙)aretheinterferometricphasevaluesofapixelintheinterferogramscreatedbycal- i+1 i culatingthephasedifferencebetweenimagei+1andirelativetoareferencepoint,and𝜖istheerrorterm.The referencepointischosentobenorthofthefaultforalltracks.Anypixelssatisfyingtherequirementof|𝜖|<1 radaredefinedas“error-freepixels”andareassumedtobecorrectlyunwrapped.Anerrortermisneeded becausetheinterferogramsaremultilookedbeforeunwrapping,andsowedonotexpecttohaveperfectclo- surearoundeachinterferometricloop.Using𝜖=1isreasonableasitiswellbelowthe2𝜋radiansrequiredto produceunwrappingerrorsandallowsforasmallamountofclosureerrorintroducedbythenonlinearnature ofmultilooking.Inourtestssetting𝜖to0.5madenosignificantimpactontheacceptancerates. In each iteration, we keep all unwrapping parameters fixed (such as the number of interferograms and filtering)butassumethatpixelsidentifiedaserror-freeinthepreviousiterationarelikelyunwrappedcorrectly andapplyahighcosttochangingthephasedifferencebetweenthesepixelsinthenextiteration.TheStaMPS unwrappingalgorithmusesthedouble-differencephaseevolutionintimetocalculateaprobabilitydensity functionofunwrappedphaseforeachpixelpairineachinterferogram.Forinterferogramswherebothpixels inapairareidentifiedasunwrappedcorrectly,wesettheweightingto100timesthoseoftheotherinterfer- ograms,toeffectivelyensurethattheevolutionintimeisfixed.Inthisway,theiterativeunwrappingmethod usestheerror-freepixelsasaguidetounwrappingtheregionsthatcontainedunwrappingerrorsinprevious iterations. López-Quirozetal.[2009]describeaprocesswhereunwrappingisiteratedontheresidualinterferogramafter theremovalofanestimateofthedeformationsignalwhileourtechniqueiteratestheStaMPSunwrapping procedureontheactualinterferometricphase. 3.2.TestingtheIterativeUnwrappingProcedure We tested the new algorithm on data from Envisat descending track 207, which covers a region roughly 100kmby400kmincentralTurkey(Figure1b).Eachiterationconsistsofthefollowingsteps:runningthe StaMPSunwrappingalgorithm,determiningthepixelsunwrappedcorrectlyineachinterferogramusingthe methoddescribedaboveandinAppendixA,applyingahighcosttounwrappingacrossthesepixels,and rerunningtheunwrappingalgorithmagain.Weiteratethisprocedure30times.Theresultsfromstandard unwrappingdoesnotchangeasnomodificationsaremadetoitsinputsandisrepresentedbythestraight lineindicatingnochangeinthenumberoferror-freepixelsperiteration.Figure3showsthatthepercentage oferror-freepixelsintheentiresmallbaselinenetworkincreasessharplywiththefirsteightiterationsfrom 70%to83%,reachingamaximumof84%after30iterations;meaningthattherearesomeunwrappingerrors themethodisunabletofix.Thisisalsoevidentfromtheindividualinterferograms(Figure4),whichshowthis samerapidincreaseinthepercentageoferror-freepixelsfollowedbyaplateau.Itisclearthattherearesome unwrappingerrorsthatcannotbecorrected(bluecolorsinFigure5)usingtheiterativemethod.However, theiterativeproceduregreatlyreducesthetotalnumberofunwrappingerrorsandthusincreasestheInSAR coveragewhileminimizingerrors. Aftereightiterationsthepercentageoferror-freepixelsincreasedfrom90%to94%fortrack250,from65% to80%fortrack436,from92%to95%fortrack479,from83%to87%fortrack343,from71%to77%fortrack 28,andfrom91%to93%fortrack71. HUSSAINETAL. INTERSEISMICCENTRALNAF 5 Journal of Geophysical Research: Solid Earth 10.1002/2016JB013108 Figure3.Totalpercentageofpixelsinthesmallbaselinenetworkfordescendingtrack207thatwereidentifiedas closed,i.e.,correctlyunwrapped,usingouriterativeunwrappingprocedure(blue)andthestandardunwrapping(red) algorithm.Thereisarapidincreaseinthenumberoferror-freepixelsforthefirsteightiterationsafterwhichitreachesa plateau.Asnomodificationismadetotheinputoftheunwrappingalgorithm,thereisnochangeforeachiterationof thestandardunwrappingalgorithm. 4.InterseismicVelocityFieldAcrosstheCentralNAF Toinvestigatethepatternofinterseismicstrainaccumulationalongthefault,wedecomposeourfullInSAR velocityfieldintothefault-parallelandfault-perpendicularcomponentsofmotion.Followingthemethod describedinHussainetal.[2016],wedothisfirstbyresamplingourInSARLOSvelocities(Figure6)ontoa 1kmby1kmgridencompassingthespatialextentofallourtracks.Weuseanearestneighborresampling techniqueincludingonlythosepersistentscattererpixelswithanearestneighborwithin1kmofthecenter ofeachgridpoint.WereferenceeachtracktoaEurasia-fixedGNSSreferenceframebyfirstaveragingthe InSARvelocitiesthatfallina1kmradiusaroundeveryGNSSstationwithintheboundariesofeachInSAR track.WeprojecttheGNSSvelocitiesintothelocalsatellitelineofsightandcalculatethedifferencefromthe Figure4.Changesinthepercentageoferror-freepixels(correctlyunwrappedpixels)periterationshownforselected interferograms.Inbluearethechangesfortheiterativeunwrappingalgorithm,whileredindicatesthestandard unwrapping. HUSSAINETAL. INTERSEISMICCENTRALNAF 6 Journal of Geophysical Research: Solid Earth 10.1002/2016JB013108 Figure5.Evolutionofthenumberoferror-freepixels(correctlyunwrappedpixels)periterationshownforinterferogram29.Error-freepixelsareidentifiedinred, whilepixelsthatdidnotclose,i.e.,haveunwrappingerrors,areinblue.TheunwrappedphaseforeachiterationisshowninFigureS7inthesupporting information. InSARvelocities.TheverticalcomponentoftheGNSSvelocitiesarenotavailableontheGlobalStrainRate Modelwebsite.Ergintavetal.[2009]showedthattheverticalGNSScomponentissmallandverynoisyover westernTurkey;therefore,weonlyusethehorizontalvelocitiesinouranalysis.Wedeterminethebestfitplane throughtheresidualvelocitiesandremovethisfromtheInSARvelocitiestotransformtheLOSvelocitiesinto aEurasia-fixedGNSSreferenceframe.Thisprocedureisdoneseparatelyforeachtrack. Toestimatetheuncertaintiesinthedata,wecalculatetheRMSresidualinhorizontalvelocitiesintheover- lappingareasbetweenneighboringtracksassumingnegligibleverticalmotion(FigureS4).Theresidualsare approximatelyGaussianwithmeanvaluesclosetozero.TheaverageRMSmisfitis5mm/yr,whichgivesan empiricaluncertaintyof∼4mm/yrfortheindividualtracks. Foreverypixelwhereinformationfrombothascendinganddescendinggeometriesareavailable,weuse equation(3)toinvertfortheeast-westandverticalcomponentsofmotionfollowingthemethoddescribed byWrightetal.[2004]andHussainetal.[2016]whiletakingintoaccountthelocalincidenceangles: ⎡D ⎤ E D =[sin(𝜃)cos(𝛼) −sin(𝜃)sin(𝛼) −cos(𝜃)]⎢D ⎥, (3) LOS ⎢ N⎥ ⎣D ⎦ U whereD istheLOSvelocity,𝜃isthelocalradarincidenceangle,𝛼istheazimuthofthesatelliteheading LOS vector,and[D ,D ,D ]Tisavectorwiththeeast,north,andverticalcomponentsofmotion,respectively. E N U HUSSAINETAL. INTERSEISMICCENTRALNAF 7 Journal of Geophysical Research: Solid Earth 10.1002/2016JB013108 Figure6.Descendingandascendingline-of-sightvelocitieswitheachtrackreferencedtoaEurasiafixedGNSSreference frame.Redcolorsindicatemotionawayfromthesatellite,whilebluecolorsindicatemotiontowardthesatellite. Equation (3) contains three unknowns (D ,D and D ), but we only have two input velocities with large E N U differences in satellite look angle in the inversion (the ascending and descending InSAR LOS velocities). Therefore,itisimpossibletocalculatethefull3-Dvelocityfieldwithoutapriorassumption.Thecommon assumptionmadeinpreviousstudiesisthatthereisnoverticalmotionacrosstheregionofinterest[e.g., Waltersetal.,2014;Hussainetal.,2016].Inourcasewenotethatboththeascendinganddescendingtracksare equallyinsensitivetomotioninthenorth-southdirection.Wethereforeusethesmoothinterpolatednorth componentoftheGNSSvelocities(FigureS5)toconstrainthenorth-southcomponent(D )intheinversion, N andsolvefortheeast-westandverticalcomponentsofmotionusingtheInSARLOSvelocities.Wecalculate thefault-parallelcomponentofthehorizontalvelocitybyassumingthatmotionoccursonastrike-slipfault ∘ trendingatN81 E. Ourfault-parallelvelocities(Figure7a)showtheexpectedright-lateralinterseismicmotionacrosstheNAF, with red colors representing motion to the northeast and blue to the southwest. Our estimated vertical componentshowsthatthereislittleverticalmotionacrosstheNAFinthisregion(Figure7b). Thereisarelativelysharpchangeinfault-parallelvelocitysouthoftheNAF(Figure7)thatcoincideswiththe B-B′profileline.Webelievethatthisisduetoacombinationofpostseismicdeformationfromthe2000Orta HUSSAINETAL. INTERSEISMICCENTRALNAF 8 Journal of Geophysical Research: Solid Earth 10.1002/2016JB013108 Figure7.LOSInSARvelocitiesdecomposedintothe(a)fault-paralleland(b)verticalcomponentsofmotion,wherethe north-southcomponentisconstrainedbytheGNSSnorthcomponent(FigureS5),seetextfordescription.Negative fault-parallelvelocitiesindicatemotiontowardthewest,andnegativefault-perpendicularvelocitiesindicatemotionto thesouth.UncertaintymapsforthesecomponentsareinFigureS6.ThelineslabeledA-A′,B-B′,andC-C′areprofiles throughthefault-parallelvelocityshowninFigure8.EarthquakemomenttensorsarefromtheGlobalCentroidMoment Tensorcatalogforalleventsgreaterthanmagnitude4between1976and2016.The2000M 6Ortaearthquake w locationisshowninFigure7a. earthquake(M 6)[Taymazetal.,2007],residualatmosphereintroducedmainlyfromascendingtrack71,and w postseismicdeformationfromthe1999IzmitandDüzceearthquakes. 5.ModelingProfileVelocities Weanalyzethreeprofilesacrossthefaultwherevelocitiesfromwithin20kmareprojectedontotheprofiles showninFigure7a.Waltersetal.[2014]notedthatthereisavariationinthefault-parallelvelocityawayfrom thefaultthatisnotduetointerseismicloadingbutduetotheproximitytotheEulerpoleofrotation.For example,GNSSvelocitiespresentedbyNocquet[2012]showfault-parallelvelocityvectorswithmagnitude ∼25mm/yrclosetotheNAFbut∼8mm/yrinCyprusroughly800kmawayfromthefault.Thisvariationis mostlyduetotheproximityoftheCyprusGNSSstationstothepoleofrotationofAnatoliawithrespectto Eurasia.WeusethepoleofrotationcalculatedforAnatoliawithrespecttoEurasiabyReilingeretal.[2006], ∘ ∘ ∘ whoestimatedarotationrateof1.23 /Myraboutapolelocatedat32.1 E,30.8 NneartheNiledelta.Ina Eurasia-fixedreferenceframethisrotationeffectonlyappliestotheregionsouthoftheNAFandcorresponds toavalueof𝜃 =0.0215mm/yr/kmor2.15mm/yratadistanceof100kmfromthefault. rot Assumingthefault-parallelvelocitiesfartosouthofthefault(>200km)aremostlyduetoatmosphericnoise and contain no tectonic deformation, we calculate the variance-covariance matrix of the noise using the ∘ ∘ methoddescribedinsection2,usingvelocitiesfroma50kmby50kmregioncenteredon32.5 E,39 N.The estimatedvariance(𝜎2)andcharacteristiclength(𝜆)forthecovariancefunction(equation(1))is6.35(mm/yr)2 and35.8km,respectively. ProfilesA-A′ andC-C′ donotcrossthecreepingsectionofthefault.Fortheseprofileswefita1-Dmodel [Savage and Burford, 1973] through the profiles where the fault-parallel velocity, v , at a fault normal par HUSSAINETAL. INTERSEISMICCENTRALNAF 9 Journal of Geophysical Research: Solid Earth 10.1002/2016JB013108 Figure8.Profilesthroughthefault-parallelvelocitiesalongthreelinesshowninFigure7.Theredpointsare fault-parallelvelocitiesprojectedfromwithin±25kmdistanceontotheprofile.Thebluepointsarethefault-parallel componentoftheGNSSvelocities.Theboldblackdashedlineisthebestfit,maximumaposterioriprobability(MAP) solution,whilethelightgrey-shadedregionisthe95%modelconfidencerange.Thebestfitmodelparametersare showninthetextwiththe95%confidencerangeinbrackets. distancex,isafunctionofthefaultsliprate,S,andthelockingdepth,d .Includingtherotationeffectdiscussed 1 above,our1-Dmodelis ( ) { S x 0.0215, ifx>0 v (x)= arctan +x𝜃 +a, where𝜃 = , (4) par 𝜋 d rot rot 0, ifx≤0 1 whereaisastaticoffset. However,profileB-B′ crossesthecreepingsectionofthefault.Forthisprofilewemodelthefault-parallel velocityasacombinationoftwosignals:alongwavelengthsignalthatrepresentsinterseismicloadingatrate Sandlockingdepthd ,andashortwavelengthsignalthatrepresentsthefaultcreepatarateCfromthe 1 surfacedowntodepthd [e.g.,Wrightetal.,2001a;Elliottetal.,2008;Hussainetal.,2016]. 2 ( ) [ ( ) ] { S x 1 x 0.0215, if x>0 v (x)= arctan +C arctan −(x) +x𝜃 +a, where𝜃 = , (5) par 𝜋 d 𝜋 d rot rot 0, if x≤0 1 2 where(x)istheHeavisidefunction. Wefindbestfitvaluesforeachmodelparameter(S,d ,C,andd )andanoffseta,usingaBayesianapproach, 1 2 implementingtheGoodmanandWeare[2010]affine-invariantensembleMarkovchainMonteCarlo(MCMC) samplerwhileaccountingforthecovariance.FordetailsseeHussainetal.[2016]. OurMCMCsampleruses600walkerstoexploretheparameterspaceconstrainedby0 < S(mm/yr)< 60, 0 < d (km),< 60,0 < C(mm/yr),< 30,0 < d (km),< 40,−40 < a(mm/yr)< 40,assumingauniform 1 2 priorprobabilitydistributionovereachrange.Animportantconstraintweimposeisthatthemaximumcreep depthcannotbegreaterthanthelockingdepth,i.e.,d ≤d .OurMCMCmodelrunsover300,000iterations 2 1 andproduces48,000randomsamplesfromwhichweestimateboththemaximumaposterioriprobability (MAP)solutionandcorrespondingparameteruncertainties. TheresultsofouranalysisareshowninFigure8,withtheobservedprofilevelocityinredandtheMAPsolution inbolddashedline.Thesampledmarginalprobabilitydistributionsforthefaultsliprate,thelockingdepth, HUSSAINETAL. INTERSEISMICCENTRALNAF 10

Description:
However, slip rate estimates for the central NAF are relatively poorly constrained, with sparse GNSS data north . However, due to atmospheric delays, InSAR signals are effectively uncorrelated in time, violating this assump- tion. satellite acquisition and an estimate of the phase noise. This is u
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.