ebook img

Interior Point Methods with Applications to Discrete Optimization [Lecture notes] PDF

47 Pages·2005·0.402 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Interior Point Methods with Applications to Discrete Optimization [Lecture notes]

SvenO.Krumke Interior Point Methods with Applicationsto Discrete Optimization Draft: July20,2004 ii Thesecoursenotesarebasedonmylecture »Interior Point Methods« at the University ofKaiserslautern. I would be happy to receive feedback, in particularsuggestionsforimprovementand notificiationsoftyposandothererrors. SvenO.Krumke krumkemathematik.uni-kl.de File: Revision: Date: nlp-le ture.tex 1.30 2004/07/2016:06:47GMT Contents 1 Preliminaries 1 1.1 SomeHistory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Newton’sMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 LinearPrograms 5 2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 TheCentralPath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Newton’sMethodforthePrimal-DualSystem . . . . . . . . . . . . . . . . . . . . . 10 2.4 OrthogonalProjections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.5 OrthogonalProjectionsandtheNewtonStep . . . . . . . . . . . . . . . . . . . . . . 12 2.6 AnalysisofaSingleNewtonStep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.7 APrimal-DualShort-Step-Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.8 FromNear-OptimalitytoOptimality . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.9 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 SemidefinitePrograms 27 3.1 BasicsandNotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 SemidefiniteProgramsandDuality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 TheMax-Cut-Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.1 FormulatingtheRelaxationasSemidefiniteProgram . . . . . . . . . . . . . 32 3.3.2 AnApproximationAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.4 TheCentralPath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.5 APrimal-Dual-Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.5.1 ChoiceoftheNewtonDirection . . . . . . . . . . . . . . . . . . . . . . . . . 40 Bibliography 43 Preliminaries 1.1 Some History For a long time, the Simplex Method was judged to be the most efficient method to solve Linear Programs. Although exponential time in the worst- case,thissituationseemstooccurrarely“inpractice”. Khachian[Kha79]was thefirsttopresentapolynomialtimealgorithmforLinearProgrammingand hisresultevenmadeittothefrontpageoftheNewYorkTimes. Althoughtheo- reticallyimportant,theellipsoid-method(whichhadbeenknownforalongtime before Khachians result but which nobody considered to be efficient) was a practicaldisappointment. Theresearchinterestinalternativetechniqueswas sparkedbyKarmarkar’sseminalpaper[Kar84]whichshowedthatusingpro- jective transformations one could obtain an algorithm with polynomial run- ningtime. Sincethenmany“interiorpoint”methodshavebeeninvestigated andthetechniqueshavebeenshowntocarryovertomoregeneraloptimiza- tionproblemssuchasquadraticorsemidefiniteproblems. In general, constrained optimization—finding the best value of an objective function subject to constraints—has undergone a sweeping change, often called the “interior point revolution”, starting with Karmarkar’s announce- mentofagenuinelyfastpolynomial-timealgorithmforLinearProgramming. Interior point methods have since provideda fascinatingmixtureof old and new ideas with applications ranging from Linear Programming to approxi- mation algorithms for NP-hard problems. One of the most important con- cepts in the development of polynomial time algorithms was the notion of “self-concordance” introduced by Nesterov and Nemirovski [NN94]. The book [NN94] contains a wealth of results, but in my humble opinion, the presentation of the material avoids that the results are accessible to a larger community. Theselecturenotesareintentedasanintroductiontointeriorpointmethods. We start with Linear Programs in Chapter 2 before we discuss the currently very active field of Semidefinite Programming in Chapter 3. We also show how the methods can be used to obtain approximation algorithms for NP- hardoptimizationproblemsfromtheareaofdiscreteoptimization. 1.2 Newton’s Method Newton’s method lies at the heart of many interior point methods. It is a methodforsolvingproblemsoftheform (1.1) g(z)=0, 2 Preliminaries whereg: Rn Rnisa(nonlinear)smoothfunction. Weassumeinthesequel thatg(z¯) = 0forsome(unknown)vectorz¯ Rn,thatis,thereexistsinfacta ∈ solutionof(1.→1). Supposethatwearegivenanapproximationztoz¯ (andg(z) = 0sinceother- 6 wisewewouldbedone).Wewishtodetermineastep∆zsuchthatz+ :=z+∆z isabetterapproximationtoz. Tothisend,wereplacegbyitslinearizationatz (cf.Taylor’sTheorem,seee.g. [Rud76]): ! g(z+∆z) g(z)+Dg(z)∆z=0. ≈ IfDg(z)−1 exists,thentheNewtonstep∆zatzisgivenby ∆z:=−Dg(z)−1g(z), whichisnonzeroifg(z)=0andleadstotheiterate 6 z+ :=z+∆z=z−Dg(z)−1g(z). Theresultingalgorithm,Newton’smethod,startsfromaniteratez(0)andthen iterativelycomputes (1.2) z(k+1) :=z(k)−Dg(z(k))−1g(z(k)). Before we consider the convergence properties of Newton’s method, let us brieflyrecallTaylor’sTheorem: Theorem1.1(Taylor’sTheoreminRn) Let D Rn be open and g: D Rk withg C2(D). Letx Dandδ>0besuchtha⊆tB¯ (x ) D. Then,thereexists 0 δ 0 ∈ ∈ ⊆ M=Mδ >0suchthatforallhwith h δwehave → k k ≤ g(x0+h)=g(x0)+Dg(x0)h+r∞(h), with r(h) M h 2 . k k ≤ k k Proof: Seee.g.[Rud76,JS04]. ∞ ∞ 2 Inanutshell,asmoothfunctionbehaveslocallylikeaquadraticfunction. Theorem1.2 Let g: Rn Rn be a functionwith g C3(Rn) and g(z¯) = 0 for ∈ someunknownpointz¯ Rn. Letz(0) Rn besomestartingpoint,and(z(k)) be k ∈ ∈ thesequencegeneratedbyN→ewton’sMethod(see(1.2)). Supposethatdet(Dg(z¯))=0. Thereexistsδ>0andc=c >0suchthatNewton’s δ 6 methodwithanystartingpointz(0) with z(0)−z¯ δtheinequality 2 k k ≤ z(k+1)−z¯ c z(k)−z¯ 2 k k2 ≤ k k2 holdsforalllargek,thatis,thesequence(z(k)) convergeslocallyquadraticallytoz¯. k Proof: Sinceg C1(Rn)itfollowsthatdetDg(z)dependscontinuouslyonz. ∈ Inparticular,detDg(z)=0forallz B (z)={z: z−z¯ <ε}forsomesmall ε 6 ∈ k k ε>0. Clearlyg(z¯)=0ifandonlyifz¯isafixedpointoftheiterationfunction Φ(z):=z−Dg(z)−1g(z) anddetDg(z¯)=0. Usingthefactthattheinverseofamatrixdependsanalyt- 6 icallyonthematrixentriesanddetDg(z) = 0forallz B (z¯),itfollowsthat ε 6 ∈ ΦistwicecontinuouslydifferentiableinB (z¯). Wehave ε DΦ(z)=I−Dg(z)−1Dg(z)−D(Dg(z)−1)g(z) File: Revision: Date: nlp-le ture.tex 1.30 2004/07/2016:06:47GMT 1.2Newton’sMethod 3 and hence DΦ(z¯) = 0. Taylor’s Theoremstatesthatthereexists M > 0such thatforallz B¯ (z¯) ε/2 ∈ Φ(z)=Φ(z¯)+DΦ(z¯)(z−z¯)+r(z−z¯), where r(z−z¯) M z−z¯ 2. UsingthefactthatDΦ(z¯)=0weseethat k k≤ k k Φ(z)−Φ(z¯) = r(z−z¯) M z−z¯ 2. k k k k≤ k k With z := z(k), z(k+1) = Φ(z(k)) and z¯ = Φ(z¯) the claim follows if we set δ:=min{ε/2,1/(2M)}. 2 File: Revision: Date: nlp-le ture.tex 1.30 2004/07/2016:06:47GMT Linear Programs 2.1 Preliminaries InthischapterweconsiderLinearProgramsinstandardform: (2.1a) (LP) min cTx (2.1b) Ax=b (2.1c) x 0, ≥ whereAisanm n-matrix,b Rm andc Rn. The LinearProgramming × ∈ ∈ dualof(2.1)isgivenby (LD) max bTy ATy c, ≤ which,afterintroductionofslack-variabless Rncanbewrittenequivalently ∈ + as (2.2a) (LD) max bTy (2.2b) ATy+s=c (2.2c) s 0 ≥ Any vector x Rn which is feasible for (2.1) will be called a primal feasible ∈ solution. Similarly(y,s) Rm Rnwhichisfeasiblefor(2.2)istermedadual ∈ × feasiblesolution. Ifxisprimalfeasibleand(y,s)isdualfeasible,thenwehave (2.3) 0 xTs=xT(c−ATy)=cTx−(Ax)Ty=cTx−bTy. ≤ Thus,cTx bTy. ThefamousDualityTheoremofLinearProgrammingstates ≥ that,infact,“usually”theoptimalsolutionvaluesof(2.1)and(2.2)coincide: Theorem2.1(DualityTheoremofLinearProgramming) If both, the primal problem (2.1) and the dual problem (2.2) have feasible solutions, then both prob- lemsalsohaveoptimalsolutionsx and(y ,s ),respectively. Moreover,inthiscase ∗ ∗ ∗ wehavecTx =bTy ,thatis,theoptimalvaluesofbothproblemscoincide. ∗ ∗ Proof: Seee.g.[Chv83]. 2 FromtheDualityTheoremand(2.3)wecaneasilyderivetheso-calledcomple- mentaryslacknessoptimalityconditionsforthepair(2.1)and(2.2)ofdualLinear 6 LinearPrograms Programs: If x is primalfeasible and (y,s) is dualfeasible, then x is optimal for(2.1)and(y,s)isoptimalfor(2.2)ifandonlyif (2.4) x s =0, fori=1,...,n. i i This follows, since in (2.3) we have xTs = 0 for x 0 and s 0 if and only ≥ ≥ if(2.4)holds. Asashorthand,by P ={x Rn :Ax=b,x 0} ∈ ≥ D= (y,s) Rm Rn :ATy+s=c,s 0 ∈ × ≥ wedenotethesetoffe(cid:8)asiblesolutionsoftheLP(2.1)anditsd(cid:9)ual(2.2).Wealso use the following shorthands for the setof strictlyfeasiblesolutions for (2.1) and(2.2): P+ ={x Rn :Ax=b,x>0} ∈ D+ = (y,s) Rm Rn :ATy+s=c,s>0 ∈ × Throughoutthischapt(cid:8)erwemakethefollowingassumptions(cid:9): Assumption2.2 (i) ThematrixAhasfullrowrank,thatis,rankA=m. (ii) Bothproblems,(2.1)and(2.2)havestrictlyfeasiblesolutions,thatis,P+ = ∅ 6 andD+ =∅. 6 Assumption 2.2(i) can always be enforced by Gaussian elimination. We will showlaterthatAssumption2.2(ii)doesnotimposealossofgenerality. Recall that by Duality Theorem we have that Assumption 2.2(ii) implies that both problems,(2.1)and(2.2)haveoptimalsolutions. Inthischapteranuppercaseletterdenotesthediagonalmatrixcorresponding thetherespectivevector,e.g.,ifx Rn,then ∈ x 1  x2  X=diag(x)= ...     x  n   Moreover,byewedenotethevectorconsistingofallonesofappropriatedi- mension,thatis, e=(1,...,1)T. 2.2 The Central Path BytheDualityTheoremofLinearProgramming(seeTheorem2.1onthepre- ceding page) x Rn and (y,s) Rm Rn are optimal for (2.1) and (2.2) ∈ ∈ × respectively,ifandonlyiftheysatisfy (2.5a) Ax=b (2.5b) ATy+s=c (2.5c) Xs=0 (2.5d) x 0,s 0 ≥ ≥ File: Revision: Date: nlp-le ture.tex 1.30 2004/07/2016:06:47GMT

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.