Integrated Transportation and Energy Activity-Based Model by Anwar Ghauche Bachelor of Engineering in Civil and Environmental Engineering, 2008 American University of Beirut Submitted to the Department of Civil and Environmental Engineering in partial fulfillment of the requirements for the degree of Master of Science in Transportation at the Massachusetts Institute of Technology February 2010 © 2010 Massachusetts Institute of Technology. All rights reserved Signature of Author Department of Civil and Environmental Engineering January 22, 2010 Certified by Moshe Ben-Akiva Edmund K. Turner Professor of Civil and Environmental Engineering Thesis Supervisor Certified by P. Christopher Zegras Ford Career Development Assistant Professor of Urban Studies and Planning Thesis Co-Supervisor Accepted by Daniele Veneziano Chairman, Departmental Committee for Graduate Studies 2 Integrated Transportation and Energy Activity-Based Model by Anwar Ghauche Submitted to the Department of Civil and Environmental Engineering on January 22, 2010 in partial fulfillment of the requirements for the degree of Master of Science in Transportation Abstract There is a long history of projects and regulations that have had limited or even counter- productive results. These unforeseen effects are due to the failure of planners to capture all of the complexity inherent in urban dynamics. With the increasing risks of global warming, policy- makers and planners need to make optimal or close-to-optimal decisions on how to use the available resources in order to reduce energy and fuel consumption. This thesis develops the framework for an urban model that serves as a decision support tool to inform sustainable policies and investments. The model discussed integrates the modeling of land use, transportation, and energy consumption by micro-simulating the behavior of households and firms in an urban area. This approach derives transport and energy consumption from human activities and includes the two-way feedback between each agent‟s behavior and the area‟s overall dynamics. We build upon complex systems theory and make an analogy with epidemiology modeling to derive the properties of heterogeneity-based, organized complex systems. We then translate the properties of these models with respect to the spatial and temporal resolutions of transportation, land market and energy systems‟ models. To achieve the integration of the three complex systems with activities in our framework, we present three different extensions to activity-based modeling in the household context. We first expand the scope of activities considered in activity-based modeling to fit the integrated transportation and energy scope. We then present the econometric techniques of latent variable and latent class modeling to capture individual heterogeneity. Third, we formulate the motivation behind activity participation and model the short- and long-term activity dynamics by operationalizing the concept of stress. 3 We illustrate the potential of iTEAM in modeling different scenarios to demonstrate the role of our integrated transportation and energy model as a decision support tool for sustainable urban planning. Thesis Supervisor: Moshe E. Ben-Akiva Title: Edmund K. Turner Professor of Civil and Environmental Engineering Thesis Co-Supervisor: P. Christopher Zegras Title: Ford Career Development Assistant Professor of Urban Studies and Planning 4 Acknowledgements This thesis represents my academic rite of passage following a year and a half of long hours of research. I feel a sense of achievement and pride to have gone on this journey at MIT and I would like to take this chance to show my gratitude to the many people without whom this thesis would not have been possible. I thank my research advisor Professor Moshe Ben-Akiva for his guidance and for extending me a genuine invitation to ponder with no strings attached. I thank Professor Christopher Zegras for his advice that greatly improved my research. I thank Professor Joseph Sussman for his constant support throughout my journey at MIT. I thank Professor Patrick Jaillet for giving me the opportunity to teach with him – a mind-changing experience in many ways. I gratefully acknowledge the numerous sources from which my education was funded including the Schoettler foundation, the MIT-Portugal Program, the MIT CEE department and the MIT Energy Initiative seed grant. I am grateful to so many people who generously offered their time to help me on this journey: Professor Isam Kaysi for his continuous support throughout my studies. Professor Rabi Mishalani and Dr. Charisma Choudury whom, despite our short time together at MIT, gave me more than enough ideas and encouragement to last throughout my stay. Kris Kipp, Jeanette Marchocki, Patty Glidden and Donna Beaudry for helping me with all of the administrative processes. Marianne Hatzopoulou, Travis Dunn, Vikrant Vaze, Angelo Guevara and Karim Kassam for their guidance at different points in my research. I am glad to have shared the ITS lab with many good people and will particularly remember the uplifting late-night conversations with Samiul Hasan, Enyang Huang and Sujith Rapolu. I have to thank all of my friends – you know who you are – and particularly Lynne Waldman, for being there for me and making this experience such an enjoyable one. Most importantly, I would like to thank my parents Janan and Salim, and my brother Sami, for their love and unwavering support that made all of this possible. 5 Table of Contents LIST OF TABLES ........................................................................................................................ 8 LIST OF FIGURES ...................................................................................................................... 8 CHAPTER 1 INTRODUCTION .............................................................................................. 10 1.1 Context ............................................................................................................................. 10 1.2 Motivation ........................................................................................................................ 14 1.3 Thesis scope ..................................................................................................................... 16 1.4 Research objective .......................................................................................................... 17 1.5 Research contributions ................................................................................................... 18 1.6 Thesis organization ......................................................................................................... 19 CHAPTER 2 LITERATURE REVIEW OF TRANSPORTATION, LAND-USE AND ENERGY MODELING .............................................................................................................. 21 2.1 Historical background .................................................................................................... 22 2.1.1 From 1960s to early 1970s ......................................................................................... 22 2.1.2 From early 1970s to 1980s ......................................................................................... 23 2.2 Current models: operational or under development ................................................... 24 2.2.1 PROPOLIS .................................................................................................................. 25 2.2.2 PRISM ......................................................................................................................... 28 2.2.3 CEMUS ....................................................................................................................... 30 2.2.4 ILUMASS .................................................................................................................... 31 2.2.5 I-PLACE3S .................................................................................................................. 35 2.2.6 ILUTE ......................................................................................................................... 36 2.2.7 Models Comparison .................................................................................................... 39 2.3 Background on energy modeling ................................................................................... 41 2.3.1 Mobile energy demand ................................................................................................ 42 2.3.2 Stationary energy demand .......................................................................................... 44 2.3.3 Urban energy demand modeling ................................................................................. 46 2.4 State-of-the-art on integrated urban modeling ............................................................ 48 CHAPTER 3 THE iTEAM ....................................................................................................... 51 3.1 The urban dynamics ....................................................................................................... 52 3.2 Modeling approach ......................................................................................................... 54 3.3 The iTEAM framework .................................................................................................. 57 3.4 Organized complex systems ........................................................................................... 59 3.5 The city as a system of complex organized systems integrated through activities.... 63 3.5.1 Integration of transportation with activities ............................................................... 66 3.5.2 Integration of stationary energy with activities .......................................................... 68 3.5.3 Integration of land-use with activities ........................................................................ 69 3.6 The iTEAM structure ..................................................................................................... 71 3.7 Conclusion ....................................................................................................................... 72 CHAPTER 4 BACKGROUND ON ACTIVITY-BASED MODELING AND CURRENT APPLICATIONS ........................................................................................................................ 74 4.1 Fundamentals of activity-based models ........................................................................ 74 6 4.2 Random utility theory..................................................................................................... 76 4.3 Time allocation models ................................................................................................... 79 4.3.1 Budget-constrained consumer approach .................................................................... 79 4.3.2 Discrete-continuous models ........................................................................................ 80 4.4 Activity-scheduling models ............................................................................................ 82 4.4.1 Prism-constrained activity-travel simulator ............................................................... 84 4.4.2 Activity-schedule approach ......................................................................................... 86 4.4.3 TASHA......................................................................................................................... 90 4.5 State-of-the-art in activity-based modeling .................................................................. 91 CHAPTER 5 EXTENDING ACTIVITY-BASED MODELS ................................................ 93 5.1 Scope of activities ............................................................................................................ 94 5.2 Capturing individual heterogeneity .............................................................................. 95 5.2.1 Multinomial logit models ............................................................................................ 97 5.2.2 GEV with latent variables ........................................................................................... 99 5.2.3 GEV with latent class models ................................................................................... 100 5.3 Capturing activities motivation and dynamics .......................................................... 101 5.3.1 Motivation theory and time-use research ................................................................. 103 5.3.2 Activity and need dynamics ....................................................................................... 106 5.3.3 Activities, lifestyle and long term changes: closing the loop with iTEAM ............... 109 5.4 Conclusion ..................................................................................................................... 110 5.4.1 Summary ................................................................................................................... 110 5.4.2 Inter-individual interactions ..................................................................................... 111 CHAPTER 6 SCENARIO ANALYSIS .................................................................................. 113 6.1 Model use ....................................................................................................................... 113 6.1.1 Direct transport-vehicular energy consumption ....................................................... 114 6.1.2 2nd order transport - stationary energy consumption ............................................... 114 6.1.3 3rd order transport - urban form - energy ................................................................. 115 6.1.4 Combination scenarios ............................................................................................. 115 6.1.5 Limitations ................................................................................................................ 116 6.2 Sustainability indicators ............................................................................................... 116 6.3 Transport-stationary energy scenario example ......................................................... 117 6.3.1 The base case ............................................................................................................ 117 6.3.2 The policy .................................................................................................................. 118 6.3.3 The iTEAM difference ............................................................................................... 118 6.4 Directions forward ........................................................................................................ 120 CHAPTER 7 CONCLUSION ................................................................................................. 122 7.1 Summary ........................................................................................................................ 122 7.2 The model in practice ................................................................................................... 127 7.3 Data collection ............................................................................................................... 128 7.4 Future work ................................................................................................................... 129 BIBLIOGRAPHY ..................................................................................................................... 130 7 List of Tables Table 2-1: Urban models comparison ........................................................................................... 40 Table 3-1: Comparison of heterogeneity-based organized complex systems and disorganized complex systems ........................................................................................................................... 61 List of Figures Figure 1-1: Sales Fraction in US by Vehicle type ........................................................................ 12 Figure 1-2: Weight and acceleration of US vehicle fleet .............................................................. 12 Figure 1-3: Energy production and consumption sectors ............................................................. 18 Figure 2-1: The land-use transport feedback cycle ....................................................................... 23 Figure 2-2: PROPOLIS scope ....................................................................................................... 26 Figure 2-3: PROPOLIS approach ................................................................................................. 27 Figure 2-4: PRISM Framework .................................................................................................... 29 Figure 2-5: CEMUS scope ............................................................................................................ 31 Figure 2-6: ILUMASS household behavior model ....................................................................... 32 Figure 2-7: ILUMASS structure ................................................................................................... 34 Figure 2-8: ILUTE core model ..................................................................................................... 37 Figure 2-9: ILUTE transportation environmental impact model .................................................. 38 Figure 2-10: ILUTE residential relocation decision model .......................................................... 39 Figure 3-1: Urban Dynamics ........................................................................................................ 53 Figure 3-2: Modeling approach .................................................................................................... 56 Figure 3-3: iTEAM ....................................................................................................................... 57 Figure 3-4: Household behavioral model ..................................................................................... 64 Figure 3-5: Firm behavioral model ............................................................................................... 65 Figure 3-6: Model structure .......................................................................................................... 71 Figure 4-1: Nested tobit time allocation model ............................................................................ 81 Figure 4-2: Time-space prisms ..................................................................................................... 85 Figure 4-3: PCATS structure ........................................................................................................ 86 8 Figure 4-4: Activity-schedule model structure ............................................................................. 88 Figure 4-5: TASHA ...................................................................................................................... 91 Figure 5-1: Gap between discrete choice models and human decision-making behavior ............ 96 Figure 5-2: Utility maximization choice model ............................................................................ 97 Figure 5-3: GEV with latent variables choice model .................................................................... 99 Figure 5-4: Integrated latent class model .................................................................................... 100 Figure 5-5: Maslow's theory of human motivation ..................................................................... 104 Figure 5-6: Need-activity relation ............................................................................................... 105 Figure 6-1: Transport-stationary energy case study .................................................................... 119 Figure 7-1: iTEAM ..................................................................................................................... 123 Figure 7-2: Household behavioral model ................................................................................... 125 Figure 7-3: Firm behavioral model ............................................................................................. 126 Figure 7-4: Data sources ............................................................................................................. 128 9 Chapter 1 Introduction 1.1 Context Concerns about economic viability, social equity, and environmental quality have heightened in the last few decades, intensifying interest in sustainable development. The most widely accepted definition of sustainable development was advanced in 1987 at the World Commission on Environment and Development (WCED) as one that “meets the needs of the present without compromising the ability of future generations to meet their own needs”. Despite the vagueness of this definition, we know that we have not yet achieved sustainable development as indicated by the global climate change risk. In fact, more and more parties of the United Nations Framework Convention on Climate Change (UNFCCC) view “limiting global mean temperature rise to 2 degrees centigrade above pre-industrial levels as being essential to avoid the most dangerous consequences of climate change” (Bongardt et al., 2009). How to achieve this goal and address the global warming risk is however still subject to heated debate. 10
Description: