ebook img

Integrated Antennas and Active Beamformers Technology for mm-Wave Phased-Array Systems PDF

169 Pages·2012·4.21 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Integrated Antennas and Active Beamformers Technology for mm-Wave Phased-Array Systems

Integrated Antennas and Active Beamformers Technology for mm-Wave Phased-Array Systems by Behzad Biglarbegian A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Electrical and Computer Engineering Waterloo, Ontario, Canada, 2012 (cid:176)c Behzad Biglarbegian 2012 I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract In this thesis, based on the indoor channel measurements and ray-tracing modeling for the indoor mm-wave wireless communications, the challenges of the design of the radio in this band is studied. Considering the recently developed standards such as IEEE 802.15.3c, ECMA and WiGig at 60 GHz, the link budget ofthesystemdesignfordifferentclassesofoperationisdoneandtherequirementfor theantennaandotherRFsectionsareextracted. Basedonradiationcharacteristics of mm-wave and the fundamental limits of low-cost Silicon technology, it is shown that phased-array is the ultimate solution for the radio and physical layer of the mobile millimeter wave multi-Gb/s wireless networks. Different phased-array configurations are studied and a low-cost single-receiver array architecture with RF phase-shifting is proposed. A systematic approach to the analysis of the overall noise-figure of the proposed architecture is presented and the component technical requirements are derived for the system level specifications. The proposed on-chip antennas and antenna-in-packages for various applications are designed and verified by the measurement results. The design of patch antennas on the low-cost RT/Duroid substrate and the slot antennas on the IPD technologies as well as the compact on-chip slot DRA antenna are explained in the antenna design section. The design of reflective-type phase shifters in CMOS and MEMS technologies is explained. Finally, the design details of two developed 60 GHz integrated phased-arrays in CMOS technology are discussed. Front-end circuit blocks such as LNA,continuouspassivereflective-typephaseshifters, powercombinerandvariable gain amplifiers are investigated, designed and developed for a 60 GHz phased-array radioinCMOStechnology. Inthefirstdesign, thetwo-elementCMOSphased-array front-ends based on passive phase shifting architecture is proposed and developed. In the second phased-array, the recently developed on-chip dielectric resonator antenna in our group in lower frequency is scaled and integrated with the front-end. iii Acknowledgements I would like to express my gratitude to my supervisor Prof. S. Safavi-Naeini. During my PhD study under his supervision at university of Waterloo I not only learned from him how to deal with EM problems but also how to collaborate with other colleagues in a team work. I admire his patience, invaluable support and fathomless kindness. Iwishtooffermydeepgratitudetomybeautifulwifewhowasalwayssupporting me during my study. I always felt her support whenever I needed. She also helped me a lot in solving electromagnetic and microwave problems. My sincere thanks to Prof. Shahriar Mirabbasi from the University of British Columbia for accepting to be my external examiner. I am also thankful to the committee members, Prof. S. Chaudhuri, Prof. S. Saini and Prof. J. Martin. Myspecialthankstomybrother, Dr. MohammadBiglarbegianwhoencouraged me all these years to work harder. The outcomes of this research would have not been possible without the great support from my best friends and research colleagues Dr. Mohammad-Reza Nezhad-Ahmadi and Dr. Mohammad Fakharzadeh. I appreciate their invaluable support and fruitful research collaboration. I would also like to thank other research colleagues Dr. Mehrbod Mohajer, Aidin Taeb, Dr. Soren Gigoyan, Dr. Javad Ahmadi-shokooh, Dr. Siamak Fouladi, Dr. Mohammed Basha, Dr. Maher Bakri-kassem, Alireza Zandieh, Saman Jafarlou, Chris Beg and Mehrdad Fahimnia. I am very grateful to James Dietrich at CMC advanced RF lab at University of Manitoba for his support in test and characterization of millimeter-wave chips, Amin Enayati at University of Lueven for the on-chip antenna measurements, Dr. Jianzeng Xu at CMC, Phil Regier for CAD support and Lynn Rivait at EIT coffee-shop. I would like to also acknowledge National Science and Engineering Research Council of Canada (NSERC) and Research in Motion (RIM) for funding the research, Canadian Microelectronics Corporation (CMC) for the tools and chip fabrications and ON-Semiconductor for IPD device fabrications. I am thankful to my unique teacher at University of Tehran, Prof. Mahmoud Shahabadi. His great lectures in my undergraduate study introduced me to electromagnetic and microwave theory. I wish to express my love and gratitude to my beloved family: my awesome parents, my lovely grandmother and fantastic Mehrdad. iv Dedication To my beautiful wife, Zahra To my parents v Contents List of Tables x List of Figures xii List of Abbreviations xviii 1 Introduction 1 1.1 Advantages of mm-wave frequency range . . . . . . . . . . . . . . . 1 1.2 Millimeter-Waves: Enabling technologies for a future generation of ultra-broadband radio networks . . . . . . . . . . . . . . . . . . . . 2 1.2.1 The application of mm-wave for Gb/s wireless communications 2 1.3 Motivations for investigating on mm-wave phased-arrays . . . . . . 3 1.3.1 Channel capacity for high frequency wireless communications 3 1.3.2 The feasibility of integration on silicon . . . . . . . . . . . . 4 1.3.3 The market . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Why phased-arrays for mm-wave? . . . . . . . . . . . . . . . . . . . 8 1.5 Objective of the research . . . . . . . . . . . . . . . . . . . . . . . . 8 1.6 Outline of this Research . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Channel Measurement and System Analysis of the mm-Wave Wireless System 12 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Line-of-sight indoor mm-wave oropagation channel . . . . . . . . . . 13 2.2.1 Required antenna characteristics for IEEE and ECMA stan- dards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Non-line-of-sight indoor mm-wave propagation channel . . . . . . . 16 2.3.1 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 19 vi 2.3.2 Link budget design for wireless mm-wave network . . . . . . 20 2.4 Chapter summary and conclusions . . . . . . . . . . . . . . . . . . . 23 3 A mm-Wave Phased-Array Architecture for Wireless Applications 25 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.1 Phased-arrays and timed-arrays . . . . . . . . . . . . . . . . 26 3.1.2 Phased-array architectures . . . . . . . . . . . . . . . . . . . 28 3.1.3 Integrated phased-arrays on silicon . . . . . . . . . . . . . . 30 3.2 Phased array system design for mm-wave applications . . . . . . . . 32 3.3 Design and analysis of 60 GHz phased-array receiver front-end components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3.1 Overall noise figure of the phased-array receiver . . . . . . . 34 3.4 Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4.1 SNR calculation at the array output . . . . . . . . . . . . . 36 3.4.2 Aided beamforming results for LOS propagation . . . . . . . 36 3.4.3 Aided beamforming results for NLOS propagation . . . . . . 37 3.5 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . 38 4 Integrated Antenna Technologies for mm-Wave Systems 39 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2 Off-chip wide-beam antenna design . . . . . . . . . . . . . . . . . . 41 4.2.1 Antenna design and optimization . . . . . . . . . . . . . . . 42 4.2.2 Fan-beam antenna design . . . . . . . . . . . . . . . . . . . 44 4.2.3 Fabrication and measurements . . . . . . . . . . . . . . . . . 45 4.3 A 60 GHz on-chip slot array antenna in silicon integrated passive device technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3.1 IPD technology . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.3.2 Antenna-in-package design . . . . . . . . . . . . . . . . . . . 52 4.3.3 Measurement setup and measurement results . . . . . . . . . 55 4.4 CPW-fed chip-scale dielectric resonator antenna for mm-wave appli- cations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.4.1 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . 61 4.5 Chapter summary and conclusions . . . . . . . . . . . . . . . . . . . 62 vii 5 mm-Wave Integrated Phase Shifters 63 5.1 Phase shifters for wireless applications . . . . . . . . . . . . . . . . 63 5.1.1 Phase shifter characterization . . . . . . . . . . . . . . . . . 64 5.1.2 The effect of limited phase shifting range on the performance of the phased-array system . . . . . . . . . . . . . . . . . . . 64 5.2 Integrated microwave and mm-wave phase shifters . . . . . . . . . . 67 5.2.1 Switched transmission lines phase shifters . . . . . . . . . . 68 5.2.2 High pass/low pass phase shifter . . . . . . . . . . . . . . . . 69 5.2.3 All-pass phase shifters . . . . . . . . . . . . . . . . . . . . . 69 5.2.4 Distributed phase shifters . . . . . . . . . . . . . . . . . . . 70 5.2.5 Vector-sum phase shifters . . . . . . . . . . . . . . . . . . . 71 5.2.6 Reflective-type phase shifters (RTPS) . . . . . . . . . . . . . 71 5.3 Proposed Reflective-type phase shifter in CMOS 90 nm technology . 74 5.3.1 Broadband 90◦ hybrid . . . . . . . . . . . . . . . . . . . . . 74 5.3.2 Lumped element reflective load . . . . . . . . . . . . . . . . 76 5.3.3 Developed phase shifter . . . . . . . . . . . . . . . . . . . . 77 5.4 A transmission-line-based reflective-type phase shifter in CMOS 0.13 µm technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.4.1 90◦ hybrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.4.2 Reflective load . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.4.3 Developed phase shifter performance . . . . . . . . . . . . . 82 5.5 Proposed MEMS reflective-type phase-shifter . . . . . . . . . . . . . 84 5.5.1 MEMS phase shifter architecture . . . . . . . . . . . . . . . 84 5.5.2 90◦ hybrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.5.3 Load design . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.5.4 Fabrication process . . . . . . . . . . . . . . . . . . . . . . . 90 5.5.5 Simulation results . . . . . . . . . . . . . . . . . . . . . . . 90 5.5.6 Measurement results . . . . . . . . . . . . . . . . . . . . . . 92 5.6 Chapter summary and conclusions . . . . . . . . . . . . . . . . . . . 94 viii 6 Proposed mm-Wave Integrated Phased-Array in CMOS Technol- ogy 95 6.1 Phased array design . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.2 Phased-array radio architecture . . . . . . . . . . . . . . . . . . . . 95 6.3 RTPS-based phased-array front-end . . . . . . . . . . . . . . . . . . 97 6.3.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.3.2 Block designs . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.3.3 Phased array performance . . . . . . . . . . . . . . . . . . . 101 6.4 Phased-array with integrated on-chip dielectric resonator antennas . 104 6.4.1 mm-Wave on-chip antennas . . . . . . . . . . . . . . . . . . 104 6.4.2 60 GHz on-chip H-Slot dielectric resonator antenna . . . . . 106 6.4.3 Low-noise and variable gain amplifiers . . . . . . . . . . . . 112 6.4.4 Phase shifter and power combiner . . . . . . . . . . . . . . 113 6.4.5 Phased array simulation results . . . . . . . . . . . . . . . . 114 6.4.6 Phased array measurement setup and experimental results . 115 6.5 Chapter summary and conclusions . . . . . . . . . . . . . . . . . . . 117 7 Conclusion, Future Works and Directions 120 7.1 Conclusion and contributions . . . . . . . . . . . . . . . . . . . . . 120 7.2 Future research directions . . . . . . . . . . . . . . . . . . . . . . . 121 Appendices 124 A Noise in Phased-Arrays 125 A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 A.2 Calculation of received noise in phased-arrays . . . . . . . . . . . . 126 A.2.1 Received noise calculation for the lossless antenna . . . . . . 127 A.2.2 Received noise calculation for a lossy antenna . . . . . . . . 131 A.3 An example of a practical system . . . . . . . . . . . . . . . . . . . 132 B Beamforming Algorithms for mm-Wave Receiver Phased-Array 134 B.1 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 B.2 Statement of the problem . . . . . . . . . . . . . . . . . . . . . . . 135 B.3 Reverse-channel aided Beamforming . . . . . . . . . . . . . . . . . . 135 Bibliography 137 ix List of Tables 1.1 Summary of 60 GHz Standard . . . . . . . . . . . . . . . . . . . . . 6 2.1 Mode dependent parameters of Type A, B and C devices in ECMA standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 mm-Wave Physical Channelization . . . . . . . . . . . . . . . . . . 14 2.3 Measured Permittivity of Indoor Materials at 60 GHz . . . . . . . . 18 2.4 Parameters used for link budget design of 60 GHz system in CMOS technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1 Comparison of conventional antenna arrays suitable for military applications versus those suitable for the emerging commercial applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2 Overall comparison of different phased-array architectures . . . . . 30 3.3 Summary of the parameters used in Noise Figure calculations . . . 36 4.1 Summary of the antenna classes for mm-wave applications . . . . . 41 4.2 Maximum Gain of Fan-Beam Patch Array versus Element-Spacing. 44 4.3 Beamwidth of Fan-Beam Patch Array in E-plane. . . . . . . . . . . 45 4.4 Beamwidth of Fan-Beam Patch Array in H-plane. . . . . . . . . . . 45 4.5 The comparison of state-of-art on-chip antennas performance. . . . 57 5.1 Thelookuptableforchosingtheproperphaseshiftforthemaximum signal level at the output of power combiner when the maximum phase shift is less than 2π. . . . . . . . . . . . . . . . . . . . . . . 65 5.2 Summary of the performance of the phase shifter . . . . . . . . . . 78 5.3 Summary of the performance of the phase shifter . . . . . . . . . . 83 6.1 Values chosen for VCO frequency, IF frequency and image frequency. 96 x

Description:
Electrical and Computer Engineering. Waterloo, Ontario the antenna and other RF sections are extracted. Based on The design of reflective-type phase shifters in CMOS and MEMS technologies . 5.2 Integrated microwave and mm-wave phase shifters . At mm-wave frequencies black body.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.