ebook img

Infinite Abelian Groups PDF

82 Pages·2017·9.94 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Infinite Abelian Groups

UUttaahh SSttaattee UUnniivveerrssiittyy DDiiggiittaallCCoommmmoonnss@@UUSSUU All Graduate Plan B and other Reports Graduate Studies 5-1970 IInnfifinniittee AAbbeelliiaann GGrroouuppss Joaquin Pascual Follow this and additional works at: https://digitalcommons.usu.edu/gradreports RReeccoommmmeennddeedd CCiittaattiioonn Pascual, Joaquin, "Infinite Abelian Groups" (1970). All Graduate Plan B and other Reports. 1122. https://digitalcommons.usu.edu/gradreports/1122 This Report is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Plan B and other Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. INFINAIBTEEL IGARNO UPS by JoaquPians cual A reposrutb mititnep da rtifaulli fllment oft her equiremfeonrtt hsed egree of MASTEORF S CIENCE in Mat hmeat ci s PlaBn Approved: UTASHT ATUEN IVERSITY LogaUnt,a h 1970 NOTATION Z Seto fi ntegers Q Seto fr ationals Zp:G rouopf i ntegmeord upl o •, }a Setw hoseel emenatrsea ,. .. , a n 1 n . . a, ] Subgroguepn erabtyea d, . .. , a n 1 n o(m)C yclgirco uopf o rdemr 00 o(p) :p -primcaormyp onoefnr ta tionmaoldsu lo one tG Torsion suobfgG r oup dG Maximdailv isisbulbeg rooufGp G[ p ]: { x pE.x= G0 :} nG:{ n:x x Ge} 1\ LJ\ Direscutm o ft heg roups( almoasltlc oordinaarteeO s) k'=- K ITJ\ Direpcrto duocftt heg rou�p s kf=- K ToA melia TABLOEFC ONNTTSE Page INTRODUCTION 1 PRELIMIRNEASRUYL TS 2 INFINAIBTEEL IGANR OUPS 3 LITERACTIUTDRE E 75 VIT.A 76 1 INTRODUCTION Whent het heoroyfg roupwsa sf irsitn troductehdea, t tention waso nf initger oupsN.o wt,h ei nfiniatbee ligarno uphsa vec ome inttoh eiorw n.T her esulotbst ainiendi nfiniatbee ligarno ups arev eriyn terestainndpg e netratiinon tgh ebrr anchoefsM athe­ maticsF.o re xampleev,e rtyh eortehma ti ss tateidn t hisp aper mayb eg eneralifzoerdm oduloevse rp rinicpali deadlo maiannsd appliteodt hes tudoyf l ineatrr ansformations. Thipsa peprr esentthsem osti mportraenstu litnsi nfinite abeligarno upfso llowtihnege xpositgiiovne bny J .R otmainn h is bookT,h eoroyf G roupsA:n I ntrotdiuocn.A lsos,o moef t hee xer­ cisegsi vebny J .R otmaanr ep resenitnet dh ispa perI.n o rdetro facilitoautrse t udyt,w oc lassiicfatioonfsi nfiniatbee ligarno ups areu sed.T hef irsrte ductehse s tudoyf a beligarno uptso t he studoyf t orsigorno uptso,r sion-gfrroeuep asn da ne xtenspiorno blem. Thes econcdl assificartediuocnte ost hes tudoyf d ivibsliea nd reducgerdo upsF.o llowtihnigsi s a studoyf f reea beligarno uptsh at are,i na certasienn sed,u atlo t hed ivisigbrloeu ptsh;e b asiasn d fundmaentatlh eoreomfsf initegleyn eraatebde ligarno upasr ep roved. Finalltyo,r sigorno upasn dt orsion-gfrroeuep osf r ank1 ares tudied. Iti sa ssumtehda tt her eadeirs f amiliwairt he lementgarroyu p theorayn df initaeb eligarno upsZ.o rn'lse mmias a ppliseedv eral timeass w elals s omree sulotfsv ectosrp aces. 2 PRELIMIRNEASRULYT S Thef ollowriensgu lwtisl ble u seidn t hes uppoorftt his paper, arbeun ott d irectal pya rotf i t. 1.IfK andS areg roupasn,e xtensoifoK n b yS isa group G sucthh at a.G contaKianssa normaslu bgroup. b.G/K"' S. 2.Every finite abGe ilsia a dni rgercsotuu mop f p -primary group. 3.Everfyi niatbee lian Gg irsoa u dpi recsutm o fp rimary cyclgirco ups. 4. IfG = �, thHen i i=l mG= I mH. l i=l wherme i sa positiivnet eger. n 5.IfG = I H.,t hen l i=l n G[p] = I (H.[ p]) l i=l 6.Evervye ctsopra chea sa basis. 7.Twob asefso ra vectsopra cVe h avteh es amneu mboefr elemtesn. 3 INFINAIBTEEL IAN GROUPS Allg roupusn decro nsideraartei ona belian wraintdt eanr e additiveTlhyet. r ivigarlo uips t heo neh avionnge e lemeanntd isd enotbeyd0 . Definition Int hef ollowdiinagg racma,p ital ldeetontteegr rso uapnsd thea rrodwesn otheo momorphisms. a (3 I I I v A'---- -- �B' a' Wes ayt hatth ed iagrcaomm mutiefS sa = a'S.' Thef ollowiisno gn ee xampolfea commutdiianggr am a z 6 I I ,1 1: (3 i CT (24) --- ]> 2 36 a' wherze, z, andz aret heg roumpos du6l,o1 2a nd3 6r espectively 6 12 36 and0 (24i)s a cyclgirco uopf o rde2r4 . CT n ----i> 2n 4 s m--�3 m S' z�o(24) 6 3n n ----a- -o- wherei sta h eg eneraotfo0 r( 24). 3n ConsidneorwS an() = S(na) S=( n2) =6n.a 'S(n') = a'( Sn') = a'( a) = 6n. Thne thea bovdei agrcaomm mutes. Definition A tringauladri agroafmt hef ollogw tiynpies a specitaylp oef commnugt diiagram p B wherie i sa ni dnetithyo momorpnhdi scmo mamutgeis= fi;wf e a lso sayt hagt extndesf .

Description:
facilitate our study, two classifications of infinite abelian groups are used. Conversely, suppose F has the proje!ctive property, i. e., the fol:lo,wing
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.