ebook img

Impedance source power electronic converters PDF

419 Pages·2016·10.18 MB·English
by  LiuYushan
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Impedance source power electronic converters

IMPEDANCE SOURCE POWER ELECTRONIC CONVERTERS IMPEDANCE SOURCE POWER ELECTRONIC CONVERTERS Yushan Liu Texas A&M University at Qatar, Qatar Foundation, Doha, Qatar Haitham Abu‐Rub Texas A&M University at Qatar, Qatar Foundation, Doha, Qatar Baoming Ge Texas A&M University, College Station, TX, USA Frede Blaabjerg Aalborg University, Aalborg East, Denmark Omar Ellabban Texas A&M University at Qatar, Qatar Foundation, Doha, Qatar Helwan University, Cairo, Egypt Poh Chiang Loh Aalborg University, Aalborg East, Denmark This edition first published 2016 © 2016 John Wiley & Sons, Ltd First Edition published in 2016 Registered Office John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com. The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought. Library of Congress Cataloging‐in‐Publication Data Names: Liu, Yushan, 1986– author. Title: Impedance source power electronic converters / authored by Yushan Liu, Texas A&M University at Qatar, Qatar Foundation, Doha, Qatar, Haitham Abu-Rub, Texas A&M University at Qatar, Qatar Foundation, Doha, Qatar, Baoming Ge, Texas A&M University, College Station, USA, Frede Blaabjerg, Aalborg University, Aalborg East, Denmark, Omar Ellabban, Texas A&M University at Qatar, Qatar Foundation, Doha, Qatar, Helwan University, Cairo, Egypt, Poh Chiang Loh, Aalborg University, Aalborg East, Denmark. Description: First edition. | Chichester, West Sussex, United Kingdom : John Wiley and Sons, Inc., 2016. | Includes bibliographical references and index. Identifiers: LCCN 2016014284 (print) | LCCN 2016021902 (ebook) | ISBN 9781119037071 (cloth) | ISBN 9781119037118 (pdf) | ISBN 9781119037101 (epub) Subjects: LCSH: Electric current converters. | Energy conservation–Equipment and supplies. | Transfer impedance. | Electric power production–Equipment and supplies. Classification: LCC TK7872.C8 L58 2016 (print) | LCC TK7872.C8 (ebook) | DDC 621.3815/322–dc23 LC record available at https://lccn.loc.gov/2016014284 A catalogue record for this book is available from the British Library. Front Cover image: Guillermo Perales Gonzale/Getty, TheAYS/Getty, R-J-Seymour/Getty, Cris Haigh/Getty and Stockbyte/Getty. Set in 10/12pt Times by SPi Global, Pondicherry, India 1 2016 Contents Preface xii Acknowledgment xiv Bios xv 1 Background and Current Status 1 1.1 General Introduction to Electrical Power Generation 1 1.1.1 Energy Systems 1 1.1.2 Existing Power Converter Topologies 5 1.2 Z‐Source Converter as Single‐Stage Power Conversion System 10 1.3 Background and Advantages Compared to Existing Technology 11 1.4 Classification and Current Status 13 1.5 Future Trends 15 1.6 Contents Overview 15 Acknowledgment 16 References 16 2 Voltage‐Fed Z‐Source/Quasi‐Z‐Source Inverters 20 2.1 Topologies of Voltage‐Fed Z‐Source/Quasi‐Z‐Source Inverters 20 2.2 Modeling of Voltage‐Fed qZSI 23 2.2.1 Steady‐State Model 23 2.2.2 Dynamic Model 25 2.3 Simulation Results 30 2.3.1 Simulation of qZSI Modeling 30 2.3.2 Circuit Simulation Results of Control System 31 2.4 Conclusion 33 References 33 vi Contents 3 Current‐Fed Z‐Source Inverter 35 3.1 Introduction 35 3.2 Topology Modification 37 3.3 Operational Principles 39 3.3.1 Current‐Fed Z‐Source Inverter 39 3.3.2 Current‐Fed Quasi‐Z‐Source Inverter 41 3.4 Modulation 44 3.5 Modeling and Control 46 3.6 Passive Components Design Guidelines 47 3.7 Discontinuous Operation Modes 48 3.8 Current‐Fed Z‐Source Inverter/Current‐Fed Quasi‐Z‐Source Inverter Applications 51 3.9 Summary 52 References 52 4 Modulation Methods and Comparison 54 4.1 Sinewave Pulse‐Width Modulations 54 4.1.1 Simple Boost Control 55 4.1.2 Maximum Boost Control 55 4.1.3 Maximum Constant Boost Control 56 4.2 Space Vector Modulations 57 4.2.1 Traditional SVM 57 4.2.2 SVMs for ZSI/qZSI 57 4.3 Pulse‐Width Amplitude Modulation 63 4.4 Comparison of All Modulation Methods 63 4.4.1 Performance Analysis 64 4.4.2 Simulation and Experimental Results 64 4.5 Conclusion 72 References 72 5 Control of Shoot‐Through Duty Cycle: An Overview 74 5.1 Summary of Closed‐Loop Control Methods 74 5.2 Single‐Loop Methods 75 5.3 Double‐Loop Methods 76 5.4 Conventional Regulators and Advanced Control Methods 76 References 77 6 Z‐Source Inverter: Topology Improvements Review 78 6.1 Introduction 78 6.2 Basic Topology Improvements 79 6.2.1 Bidirectional Power Flow 79 6.2.2 High‐Performance Operation 80 6.2.3 Low Inrush Current 80 6.2.4 Soft‐Switching 80 6.2.5 Neutral Point 82 6.2.6 Reduced Leakage Current 82 Contents vii 6.2.7 Joint Earthing 82 6.2.8 Continuous Input Current 82 6.2.9 Distributed Z‐Network 85 6.2.10 Embedded Source 85 6.3 Extended Boost Topologies 87 6.3.1 Switched Inductor Z‐Source Inverter 87 6.3.2 Tapped‐Inductor Z‐Source Inverter 93 6.3.3 Cascaded Quasi‐Z‐Source Inverter 94 6.3.4 Transformer‐Based Z‐Source Inverter 97 6.3.5 High Frequency Transformer Isolated Z‐Source Inverter 103 6.4 L‐Z‐Source Inverter 103 6.5 Changing the ZSI Topology Arrangement 105 6.6 Conclusion 109 References 109 7 Typical Transformer‐Based Z‐Source/Quasi‐Z‐Source Inverters 113 7.1 Fundamentals of Trans‐ZSI 113 7.1.1 Configuration of Current‐Fed and Voltage‐Fed Trans‐ZSI 113 7.1.2 Operating Principle of Voltage‐Fed Trans‐ZSI 116 7.1.3 Steady‐State Model 117 7.1.4 Dynamic Model 119 7.1.5 Simulation Results 121 7.2 LCCT‐ZSI/qZSI 122 7.2.1 Configuration and Operation of LCCT‐ZSI 122 7.2.2 Configuration and Operation of LCCT‐qZSI 124 7.2.3 Simulation Results 126 7.3 Conclusion 127 Acknowledgment 127 References 127 8 Z‐Source/Quasi‐Z‐Source AC‐DC Rectifiers 128 8.1 Topologies of Voltage‐Fed Z‐Source/Quasi‐Z‐Source Rectifiers 128 8.2 Operating Principle 129 8.3 Dynamic Modeling 130 8.3.1 DC‐Side Dynamic Model of qZSR 130 8.3.2 AC‐Side Dynamic Model of Rectifier Bridge 132 8.4 Simulation Results 134 8.5 Conclusion 137 References 137 9 Z‐Source DC‐DC Converters 138 9.1 Topologies 138 9.2 Comparison 140 9.3 Example Simulation Model and Results 141 References 147 viii Contents 10 Z‐Source Matrix Converter 148 10.1 Introduction 148 10.2 Z‐Source Indirect Matrix Converter (All‐Silicon Solution) 151 10.2.1 Different Topology Configurations 151 10.2.2 Operating Principle and Equivalent Circuits 153 10.2.3 Parameter Design of the QZS‐Network 156 10.2.4 QZSIMC (All‐Silicon Solution) Applications 157 10.3 Z‐Source Indirect Matrix Converter (Not All‐Silicon Solution) 158 10.3.1 Different Topology Configurations 158 10.3.2 Operating Principle and Equivalent Circuits 160 10.3.3 Parameter Design of the QZS Network 164 10.3.4 ZS/QZSIMC (Not All‐Silicon Solution) Applications 164 10.4 Z‐Source Direct Matrix Converter 167 10.4.1 Alternative Topology Configurations 167 10.4.2 Operating Principle and Equivalent Circuits 170 10.4.3 Shoot‐Through Boost Control Method 171 10.4.4 Applications of the QZSDMC 175 10.5 Summary 177 References 177 11 Energy Stored Z‐Source/Quasi‐Z‐Source Inverters 179 11.1 Energy Stored Z‐Source/Quasi‐Z Source Inverters 179 11.1.1 Modeling of qZSI with Battery 180 11.1.2 Controller Design 182 11.2 Example Simulations 188 11.2.1 Case 1: SOC < SOC < SOC 188 min max 11.2.2 Case 2: Avoidance of Battery Overcharging 190 11.3 Conclusion 192 References 193 12 Z‐Source Multilevel Inverters 194 12.1 Z‐Source NPC Inverter 194 12.1.1 Configuration 194 12.1.2 Operating Principles 195 12.1.3 Modulation Scheme 200 12.2 Z‐Source/Quasi‐Z‐Source Cascade Multilevel Inverter 206 12.2.1 Configuration 206 12.2.2 Operating Principles 208 12.2.3 Modulation Scheme 209 12.2.4 System‐Level Modeling and Control 213 12.2.5 Simulation Results 219 12.3 Conclusion 224 Acknowledgment 224 References 224 Contents ix 13 Design of Z‐Source and Quasi‐Z‐Source Inverters 226 13.1 Z‐Source Network Parameters 226 13.1.1 Inductance and Capacitance of Three‐Phase qZSI 226 13.1.2 Inductance and Capacitance of Single‐Phase qZSI 227 13.2 Loss Calculation Method 233 13.2.1 H‐bridge Device Power Loss 233 13.2.2 qZS Diode Power Loss 236 13.2.3 qZS Inductor Power Loss 236 13.2.4 qZS Capacitor Power Loss 237 13.3 Voltage and Current Stress 237 13.4 Coupled Inductor Design 239 13.5 Efficiency, Cost, and Volume Comparison with Conventional Inverter 239 13.5.1 Efficiency Comparison 239 13.5.2 Cost and Volume Comparison 240 13.6 Conclusion 242 References 243 14 Applications in Photovoltaic Power Systems 244 14.1 Photovoltaic Power Characteristics 244 14.2 Typical Configurations of Single‐Phase and Three‐Phase Systems 245 14.3 Parameter Design Method 245 14.4 MPPT Control and System Control Methods 248 14.5 Examples Demonstration 249 14.5.1 Single‐Phase qZS PV System and Simulation Results 249 14.5.2 Three‐Phase qZS PV Power System and Simulation Results 249 14.5.3 1 MW/11 kV qZS CMI Based PV Power System and Simulation Results 250 14.6 Conclusion 253 References 255 15 Applications in Wind Power 256 15.1 Wind Power Characteristics 256 15.2 Typical Configurations 257 15.3 Parameter Design 257 15.4 MPPT Control and System Control Methods 259 15.5 Simulation Results of a qZS Wind Power System 261 15.6 Conclusion 264 References 265 16 Z‐Source Inverter for Motor Drives Application: A Review 266 16.1 Introduction 266 16.2 Z‐Source Inverter Feeding a Permanent Magnet Brushless DC Motor 269 16.3 Z‐Source Inverter Feeding a Switched Reluctance Motor 270 16.4 Z‐Source Inverter Feeding a Permanent Magnet Synchronous Motor 273 x Contents 16.5 Z‐Source Inverter Feeding an Induction Motor 276 16.5.1 Scalar Control (V/F) Technique for ZSI‐IM Drive System 276 16.5.2 Field Oriented Control Technique for ZSI‐IM Drive System 279 16.5.3 Direct Torque Control (DTC) Technique for ZSI‐IM Drive System 279 16.5.4 Predictive Torque Control for ZSI‐IM Drive System 283 16.6 Multiphase Z‐Source Inverter Motor Drive System 283 16.7 Two‐Phase Motor Drive System with Z‐Source Inverter 286 16.8 Single‐Phase Induction Motor Drive System Using Z‐Source Inverter 286 16.9 Z‐Source Inverter for Vehicular Applications 286 16.10 Conclusion 289 References 290 17 Impedance Source Multi‐Leg Inverters 295 17.1 Impedance Source Four‐Leg Inverter 295 17.1.1 Introduction 295 17.1.2 Unbalanced Load Analysis Based on Fortescue Components 296 17.1.3 Effects of Unbalanced Load Condition 297 17.1.4 Inverter Topologies for Unbalanced Loads 300 17.1.5 Z‐Source Four‐Leg Inverter 302 17.1.6 Switching Schemes for Three‐Phase Four‐Leg Inverter 310 17.1.7 Buck/Boost Conversion Modes Analysis 316 17.2 Impedance Source Five‐Leg (Five‐Phase) Inverter 319 17.2.1 Five‐Phase VSI Model 319 17.2.2 Space Vector PWM for a Five‐Phase Standard VSI 322 17.2.3 Space Vector PWM for Five‐Phase qZSI 323 17.2.4 Discontinuous Space Vector PWM for Five‐Phase qZSI 324 17.3 Summary 326 References 326 18 Model Predictive Control of Impedance Source Inverter 329 18.1 Introduction 329 18.2 Overview of Model Predictive Control 330 18.3 Mathematical Model of the Z‐Source Inverters 331 18.3.1 Overview of Topologies 331 18.3.2 Three‐Phase Three‐Leg Inverter Model 333 18.3.3 Three‐Phase Four‐Leg Inverter Model 335 18.3.4 Multiphase Inverter Model 338 18.4 Model Predictive Control of the Z‐Source Three‐Phase Three‐Leg Inverter 342 18.5 Model Predictive Control of the Z‐Source Three‐Phase Four‐Leg Inverter 349 18.5.1 Discrete‐Time Model of the Output Current for Four‐Leg Inverter 349 18.5.2 Control Algorithm 350 Contents xi 18.6 Model Predictive Control of the Z‐Source Five‐Phase Inverter 350 18.6.1 Discrete‐Time Model of the Five‐Phase Load 352 18.6.2 Cost Function for the Load Current 353 18.6.3 Control Algorithm 353 18.7 Performance Investigation 353 18.8 Summary 359 References 359 19 Grid Integration of Quasi‐Z Source Based PV Multilevel Inverter 362 19.1 Introduction 362 19.2 Topology and Modeling 363 19.3 Grid Synchronization 364 19.4 Power Flow Control 365 19.4.1 Proportional Integral Controller 366 19.4.2 Model Predictive Control 372 19.5 Low Voltage Ride‐Through Capability 379 19.6 Islanding Protection 381 19.6.1 Active Frequency Drift (AFD) 383 19.6.2 Sandia Frequency Shift (SFS) 383 19.6.3 Slip‐Mode Frequency Shift (SMS) 383 19.6.4 Simulation Results 384 19.7 Conclusion 387 References 387 20 Future Trends 390 20.1 General Expectation 390 20.1.1 Volume and Size Reduction by Wide Band‐Gap Devices 390 20.1.2 Parameters Minimization for Single‐Phase qZS Inverter 391 20.1.3 Novel Control Methods 392 20.1.4 Future Applications 392 20.2 Illustration of Using Wide Band Gap Devices 393 20.2.1 Impact on Z‐Source Network 394 20.2.2 Analysis and Evaluation of SiC Device Based qZSI 395 20.3 Conclusion 398 References 398 Index 401

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.