ebook img

Imaginary quadratic fields with isomorphic abelian Galois groups PDF

24 Pages·2013·0.68 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Imaginary quadratic fields with isomorphic abelian Galois groups

THE OPEN BOOK SERIES 1 ANTS X Proceedings of the Tenth Algorithmic Number Theory Symposium Imaginary quadratic fields with isomorphic abelian Galois groups AthanasiosAngelakis and PeterStevenhagen msp THEOPENBOOKSERIES 1 (2013) TenthAlgorithmicNumberTheorySymposium msp dx.doi.org/10.2140/obs.2013.1.21 Imaginary quadratic fields with isomorphic abelian Galois groups AthanasiosAngelakis and PeterStevenhagen In1976,Onabediscoveredthat,incontrasttotheNeukirch-Uchidaresultsthat wereprovedaroundthesametime,anumberfieldK isnotcompletelycharac- terizedbyitsabsoluteabelianGaloisgroupA . Thefirstexamplesofnoniso- K morphicK havingisomorphicA wereobtainedonthebasisofaclassification K byKubotaofideleclasscharactergroupsintermsoftheirinfinitefamiliesof Ulminvariants,anddidnotyieldadescriptionofA . Inthispaper,weprovide K adirect“computation”oftheprofinitegroupA forimaginaryquadraticK,and K useittoobtainmanydifferentK thatallhavethesameminimalabsoluteabelian Galoisgroup. 1. Introduction TheabsoluteGaloisgroupG ofanumberfieldK isalargeprofinitegroupthat K we cannot currently describe in very precise terms. This makes it impossible to answerfundamentalquestionson G ,suchastheinverseGaloisproblemover K. K Still,Neukirch [7] provedthatnormalnumberfields arecompletelycharacterized by their absolute Galois groups: If G and G are isomorphic as topological K1 K2 groups, then K and K are isomorphic number fields. The result was refined 1 2 by Ikeda, Iwasawa, and Uchida ([8], [9, Chapter XII, §2]), who disposed of the restriction to normal number fields, and showed that every topological isomor- phism GK1(cid:0)(cid:24)! GK2 is actually induced by an inner automorphism of G(cid:81). The samestatementsholdifallabsoluteGaloisgroupsarereplacedbytheirmaximal prosolvablequotients. ItwasdiscoveredbyOnabe[10]thatthesituationchangesifonemovesafurther stepdownfromG ,toitsmaximalabelianquotientA DG =ŒG ;G (cid:141),which K K K K K istheGaloisgroupA DGal.Kab=K/ofthemaximalabelianextensionKab ofK. K MSC2010: primary11R37;secondary20K35. Keywords: absoluteGaloisgroup,classfieldtheory,groupextensions. 21 22 ATHANASIOSANGELAKISANDPETERSTEVENHAGEN EventhoughtheHilbertproblemofexplicitlygeneratingKab forgeneralnumber fieldsK isstillopenaftermorethanacentury,thegroup A canbedescribedby K classfieldtheory,asaquotientoftheideleclassgroupofK. Kubota[5]studiedthegroupX ofcontinuouscharactersonA ,andexpressed K K thestructureofthep-primarypartsofthiscountableabeliantorsiongroupinterms ofaninfinitenumberofso-calledUlminvariants. IthadbeenshownbyKaplansky [4,Theorem14]thatsuchinvariantsdeterminetheisomorphismtypeofacount- able reduced abelian torsion group. Onabe computed the Ulm invariants of X K explicitlyfor anumber ofsmall imaginaryquadratic fieldsK, andconcluded from 0 thisthatthereexistnonisomorphicimaginaryquadraticfieldsK andK forwhich theabsoluteabelianGaloisgroupsAK andAK0 areisomorphicasprofinitegroups. 0 ThismayevenhappenincasepswhereK andKp havedifferentclassnumbers,but theexplicitexampleK D(cid:81). (cid:0)2/,K0D(cid:81). (cid:0)5/ofthisthatoccursinOnabe’s maintheorem [10,Theorem 2]isincorrect. This isbecausethe valueofthe finite Ulminvariantsin[5,Theorem4]isincorrectfortheprime2incasethegrounpdfield isaspecialnumberfieldinpthesenseofourLemma3.2. Asithappens,(cid:81). (cid:0)5/ andtheexceptionalfield(cid:81). (cid:0)2/dohavedifferentUlminvariantsat2. Thenature ofKubota’s errorissimilarto anerrorin Grunwald’stheoremthat wascorrected byatheoremofWangoccurringinKubota’spaper[5,Theorem1]. Itisrelatedto thenoncyclicnatureofthe2-powercyclotomicextension(cid:81)(cid:26)(cid:81).(cid:16)21/. Inthispaper,weobtainOnabe’scorrectedresultsbyadirectclassfieldtheoretic approachthatcompletelyavoidsKubota’sdualizationandthepmachineryofUlm invariants. WeshowthattheimaginaryquadraticfieldsK ¤(cid:81). (cid:0)2/thataresaid tobeof‘typeA’in[10]sharea minimal absoluteabelianGaloisgroupthatcanbe describedcompletelyexplicitlyas A D(cid:90)y2(cid:2) Y (cid:90)=n(cid:90): K n(cid:21)1 Thenumericaldatathatwepresentsuggestthatthesefieldsareinfactverycommon amongimaginaryquadraticfields: Morethan97%ofthe2356fieldsofoddprime class number h Dp <100 are of this nature. We believe (Conjecture 7.1) that K there are actually infinitely many K for which A is the minimal group above. K Ourbeliefissupportedbycertainreasonableassumptionsontheaveragesplitting behavior of exact sequences of abelian groups, and these assumptions are tested numericallyinthefinalsectionofthepaper. 2. Galoisgroupsas(cid:90)y-modules TheprofiniteabelianGaloisgroupsthatwestudyinthispapernaturallycomewith atopologyforwhichtheidentityhasabasisofopenneighborhoodsthatareopen subgroupsoffiniteindex. Thisimpliesthattheyarenotsimply(cid:90)-modules,butthat IMAGINARYQUADRATICFIELDSWITHISOMORPHICABELIANGALOISGROUPS 23 theexponentiationinthesegroupswithordinaryintegersextendstoexponentiation with elements of the profinite completion (cid:90)y Dlim (cid:90)=n(cid:90) of (cid:90). By the Chinese (cid:0) remaindertheorem, wehaveadecomposition ofthenprofinite ring(cid:90)y DQ (cid:90) into p p a product of rings of p-adic integers, with the index p ranging over all primes. As(cid:90)y-modules,ourGaloisgroupsdecomposecorrespondinglyasaproductofpro- p-groups. It is instructive to look first at the (cid:90)y-module structure of the absolute abelian Galois group A(cid:81) of (cid:81), which we know very explicitly by the Kronecker-Weber theorem. Thistheoremstatesthat(cid:81)ab isthemaximalcyclotomicextensionof(cid:81), andthatanelement(cid:27) 2A(cid:81) actsontherootsofunitythatgenerate(cid:81)ab byexponen- tiation. Moreprecisely,wehave(cid:27).(cid:16)/D(cid:16)u forallrootsofunity,withuauniquely defined element in the unit group (cid:90)y(cid:3) of the ring (cid:90)y. This yields the well-known isomorphismA(cid:81)DGal.(cid:81)ab=(cid:81)/Š(cid:90)y(cid:3)DQp(cid:90)p(cid:3). For odd p, the group (cid:90)(cid:3) consists of a finite torsion subgroup T of .p(cid:0)1/-st p p rootsofunity,andwehaveanisomorphism (cid:90)(cid:3)DT (cid:2).1Cp(cid:90) /ŠT (cid:2)(cid:90) p p p p p because 1Cp(cid:90) is a free (cid:90) -module generated by 1Cp. For p D2 the same p p is true with T Df˙1g and 1C4(cid:90) the free (cid:90) -module generated by 1C4D5. 2 2 2 Takingtheproductoverallp,weobtain A(cid:81)ŠT(cid:81)(cid:2)(cid:90)y; (1) withT(cid:81)DQpTp theproductofthetorsionsubgroupsTp (cid:26)(cid:81)p(cid:3) ofthemultiplica- tivegroupsofthecompletions(cid:81)p of(cid:81). Morecanonically,T(cid:81) istheclosureofthe torsionsubgroupofA(cid:81)DGal.(cid:81)ab=(cid:81)/,andA(cid:81)=T(cid:81) isafree(cid:90)y-moduleofrank1. TheinvariantfieldofT(cid:81) inside(cid:81)ab istheunique(cid:90)y-extensionof(cid:81). EventhoughitlooksatfirstsightasiftheisomorphismtypeofT(cid:81) dependson thepropertiesofprimenumbers,oneshouldrealizethatinaninfiniteproductof finitecyclicgroups, theChineseremainder theoremallowsustorearrange factors inmanydifferentways. Onehasforinstanceanoncanonicalisomorphism Y Y T(cid:81)D Tp Š (cid:90)=n(cid:90); (2) p n(cid:21)1 as both of these products, when written as a countable product of cyclic groups of prime power order, have an infinite number of factors (cid:90)=`k(cid:90) for each prime power `k. Note that, for the product Q T of cyclic groups of order p(cid:0)1 (for p p p¤2),thisstatementisnotcompletelytrivial: Itfollowsfromtheexistence,bythe well-known theorem of Dirichlet, ofinfinitely many primesp that are congruent to1 mod`k,butnotto1 mod`kC1. 24 ATHANASIOSANGELAKISANDPETERSTEVENHAGEN Now suppose that K is an arbitrary number field, with ring of integers O. By classfieldtheory,A isthequotientoftheideleclassgroupC D(cid:0)Q0 K(cid:3)(cid:1)=K(cid:3) K K p(cid:20)1 p ofK bytheconnectedcomponentoftheidentity. Inthecaseofimaginaryquadratic fieldsK,thisconnectedcomponentisthesubgroupK(cid:3) D(cid:67)(cid:3)(cid:26)C comingfrom 1 K the unique infinite prime of K, and in this case the Artin isomorphism for the absoluteabelianGaloisgroupA ofK reads K A DKy(cid:3)=K(cid:3)D(cid:16)Y0K(cid:3)(cid:17)=K(cid:3): (3) K p p Here Ky(cid:3) DQ0 K(cid:3) is the group of finite ideles of K, that is, the restricted direct p p (cid:3) productofthegroupsK atthefiniteprimespofK,takenwithrespecttotheunit p groupsO(cid:3) ofthelocalringsofintegers. Forthepurposesofthispaper,whichtries p todescribeA asaprofiniteabeliangroup,itisconvenienttotreattheisomorphism K forA in(3)asanidentity—aswehavewrittenitdown. K Theexpression(3)issomewhatmoreinvolvedthanthecorrespondingidentity A(cid:81) D(cid:90)y(cid:3) for the rational number field, but we will show in Lemma 3.2 that the inertialpart ofA ,thatis, thesubgroupU (cid:26)A generatedbyallinertia groups K K K O(cid:3)(cid:26)C ,admitsadescriptionverysimilarto(1). p K DenotebyOyDQ O theprofinitecompletionoftheringofintegersOofK. In p p thecasethatK isimaginaryquadratic,theinertialpartofA takestheform K U D(cid:16)YO(cid:3)(cid:17)=O(cid:3)DOy(cid:3)=(cid:22) ; (4) K p K p sincetheunitgroupO(cid:3) ofOisthenequaltothegroup(cid:22) ofrootsofunityinK. K Apart from the quadratic fields of discriminant (cid:0)3 and (cid:0)4, which have 6 and 4 rootsofunity,respectively,wealwayshave(cid:22) Df˙1g,and(4)canbeviewedas K theanalogueforK ofthegroup(cid:90)y(cid:3)DA(cid:81). In the next section, we determine the structure of the group Oy(cid:3)=(cid:22) . As the K approach works for any number field, we will not assume that K is imaginary quadraticuntiltheveryendofthatsection. 3. Structureoftheinertialpart LetK beanynumberfield,andOyDQ O theprofinitecompletionofitsringof p p integers. DenotebyT (cid:26)O(cid:3) thesubgroupoflocalrootsofunityinK(cid:3),andput p p p T DYT (cid:26)YO(cid:3)DOy(cid:3): (5) K p p p p Theanalogueof(1)forK isthefollowing. IMAGINARYQUADRATICFIELDSWITHISOMORPHICABELIANGALOISGROUPS 25 Lemma3.1. Theclosureofthetorsionsubgroupof Oy(cid:3) isequaltoT ,andOy(cid:3)=T K K isafree(cid:90)y-moduleofrankŒK W(cid:81)(cid:141). Lesscanonically,wehaveanisomorphism Oy(cid:3)ŠT (cid:2)(cid:90)yŒKW(cid:81)(cid:141): K Proof. As the finite torsion subgroup T (cid:26)O(cid:3) is closed in O(cid:3), the first statement p p p followsfromthedefinitionoftheproducttopologyonOy(cid:3)DQ O(cid:3). p p ReductionmodulopinthelocalunitgroupO(cid:3) givesrisetoanexactsequence p 1(cid:0)!1Cp(cid:0)!O(cid:3)(cid:0)!k(cid:3)(cid:0)!1 p p (cid:3) that canbe splitby mapping theelements ofthe unit groupk of theresidue class p field to their Teichmüller representatives in O(cid:3). These form the cyclic group of p order #k(cid:3) D Np(cid:0)1 in T consisting of the elements of order coprime to p D p p char.k /. The kernel of reduction 1Cp is by [3, one-unit theorem, p. 231] a p finitelygenerated(cid:90) -moduleoffreerankŒK W(cid:81) (cid:141)havingafinitetorsiongroup p p p consistingofrootsofunityinT ofp-powerorder. Combiningthesefacts,wefind p that O(cid:3)=T is free over (cid:90) of rank ŒK W(cid:81) (cid:141) or, less canonically, that we have a p p p p p localisomorphism O(cid:3)ŠT (cid:2)(cid:90)ŒKpW(cid:81)p(cid:141) p p p for each prime p. Taking the product over all p, and using the fact that the sum of the local degrees at p equals the global degree ŒK W(cid:81)(cid:141), we obtain the desired globalconclusion. (cid:3) InordertoderiveacharacterizationofT DQ T forarbitrarynumberfieldsK K p p similarto(2),weobservethatwehaveanexactdivisibility`k k#T oftheorder p ofT byaprimepower`k ifandonlyifthelocalfieldK atpcontainsaprimitive p p `k-throotof unity,but not aprimitive`kC1-throotof unity. Wemayrewordthis as: TheprimepsplitscompletelyinthecyclotomicextensionK (cid:26)K.(cid:16) /,butnot `k inthecyclotomicextensionK (cid:26)K.(cid:16) /. Ifsuchpexistatallfor`k,thenthere `kC1 areinfinitelymanyofthem,bytheChebotarevdensitytheorem. Thus, T can be written as a product of groups .(cid:90)=`k(cid:90)/(cid:90) DMap.(cid:90);(cid:90)=`k(cid:90)/ K that are themselves countable products of cyclic groups of order `k. The prime powers`k >1thatoccurforK areallbutthoseforwhichwehaveanequality K.(cid:16) /DK.(cid:16) /: `k `kC1 ForK D(cid:81)allprimepowers`k occur,butforgeneralK,therearefinitely many primepowersthatmaydisappear. Thisisduetothefactthattheinfinitecyclotomic extension(cid:81)(cid:26)(cid:81).(cid:16)`1/withgroup(cid:90)(cid:3)` canpartially“collapse”overK. 26 ATHANASIOSANGELAKISANDPETERSTEVENHAGEN Todescribetheexceptionalprimepowers`k thatdisappearforK,weconsider, for`anodd prime,thenumber w.`/DwK.`/D#(cid:22)`1.K.(cid:16)`// of`-powerrootsofunityinthefieldK.(cid:16) /. Foralmostall`,thisnumberequals`, ` andwecall`exceptionalforK ifitisdivisibleby`2. Notethatnooddexceptional primenumbersexistforimaginaryquadraticfieldsK. Fortheprime`D2,weconsiderinsteadthenumber w.2/DwK.2/D#(cid:22)21.K.(cid:16)4// of 2-power roots in K.(cid:16) /DK.i/. If K contains i D(cid:16) , or if w.2/ is divisible 4 4 by8,wecall2 exceptional forK. NotethatptheonlyimaginaryquadraticfieldsK forwhich2isexceptionalare(cid:81).i/and(cid:81). (cid:0)2/. Thenumberw.K/ofexceptionalrootsofunityforK isnowdefinedas Y w.K/D w.`/: `exceptional Note that w.K/ refers to roots of unity that may or may not be contained in K itself,andthateveryprime`dividingw.K/occurswithexponentatleast2. The primepowers`k >1thatdonot occurwhenT iswrittenasadirectproductof K groups.(cid:90)=`k(cid:90)/(cid:90) arethestrict divisorsofw.`/atexceptionalprimes`,withthe exceptionalprime`D2givingrisetoaspecialcase. Lemma3.2. LetK beanumberfield, andw Dw.K/itsnumberofexceptional rootsofunity. Thenwehaveanoncanonicalisomorphismofprofinitegroups Y Y T D T Š (cid:90)=nw(cid:90); K p p n(cid:21)1 exceptwhen2isexceptionalforK andi D(cid:16) isnotcontainedinK. Inthisspecial 4 case,wehave Y Y T D T Š .(cid:90)=2(cid:90)(cid:2)(cid:90)=nw(cid:90)/: K p p n(cid:21)1 ThegroupTK isisomorphictothegroupT(cid:81) in(2)ifandonlyifwehavewD1. Proof. If`isodd,thetoweroffieldextensions K.(cid:16) /(cid:26)K.(cid:16) /(cid:26)(cid:1)(cid:1)(cid:1)(cid:26)K.(cid:16) /(cid:26)K.(cid:16) /(cid:26)(cid:1)(cid:1)(cid:1) ` `2 `k `kC1 isa(cid:90) -extension,andthestepsK.(cid:16) /(cid:26)K.(cid:16) /withk(cid:21)1inthistowerthat ` `k `kC1 areequalitiesareexactlythoseforwhich`kC1 dividesw.`/. Similarly,thetoweroffieldextensions K.(cid:16) /(cid:26)K.(cid:16) /(cid:26)(cid:1)(cid:1)(cid:1)(cid:26)K.(cid:16) /(cid:26)K.(cid:16) /(cid:26)(cid:1)(cid:1)(cid:1) 4 8 2k 2kC1 IMAGINARYQUADRATICFIELDSWITHISOMORPHICABELIANGALOISGROUPS 27 isa(cid:90) -extensioninwhichthestepsK.(cid:16) /(cid:26)K.(cid:16) /withk(cid:21)2thatareequal- 2 2k 2kC1 itiesareexactlythoseforwhich2kC1 dividesw.2/. TheextensionK DK.(cid:16) /(cid:26) 2 K.(cid:16) / that we have in the remaining case k D1 is an equality if and only if K 4 containsi D(cid:16) . 4 Thus,aprimepower`k >2thatdoesnotoccurwhenT iswrittenasaproduct K ofgroups.(cid:90)=`k(cid:90)/(cid:90) isthesameasastrict divisor`k >2ofw.`/atanexceptional prime `. The special prime power `k D2 does not occur if and only if i D(cid:16) is 4 inK. Notethatinthiscase,2isbydefinitionexceptionalforK. ItisclearthatreplacingthegroupQ (cid:90)=n(cid:90)from(2)byQ (cid:90)=nw(cid:90)has n(cid:21)1 n(cid:21)1 theeffectofremovingcyclicsummandsoforder`k with`kC1jw,andthisshows thatthegroupsgivenintheLemmaareindeedisomorphictoT . OnlyforwD1 K weobtainthegroupT(cid:81) inwhichallprimepowers`k arise. (cid:3) Lemmas3.1and3.2telluswhatOy(cid:3) lookslikeasa(cid:90)y-module. Inparticular,it showsthatthedependenceonK islimitedtothedegreeŒK W(cid:81)(cid:141),whichisreflected intherankof thefree(cid:90)y-partofOy(cid:3),andthe natureoftheexceptionalrootsofunity for K. For the group Oy(cid:3)=(cid:22) , the same is true, but the proof requires an extra K argument,andthefollowinglemma. Lemma3.3. ThereareinfinitelymanyprimespofK forwhichwehave gcd.#(cid:22) ;#T =#(cid:22) /D1: K p K Proof. For every prime power `k > 1 that exactly divides #(cid:22) , the extension K K D K.(cid:16) / (cid:26) K.(cid:16) / is a cyclic extension of prime degree `. For different `k `kC1 primepowers`k k#(cid:22) ,wegetdifferentextensions,soinfinitelymanyprimesp K ofK areinertinallofthem. Forsuchp,wehavegcd.#(cid:22) ;#T =#(cid:22) /D1. (cid:3) K p K Lemma3.4. WehaveanoncanonicalisomorphismT =(cid:22) ŠT . K K K Proof. Pickaprimep ofK thatsatisfiestheconditionsofLemma3.3. Then(cid:22) 0 K embeds as a direct summand in T , and we can write T Š(cid:22) (cid:2)T =(cid:22) as a p0 p0 K p0 K product of two cyclic groups of coprime order. It follows that the natural exact sequence Y 1(cid:0)! T (cid:0)!T =(cid:22) (cid:0)!T =(cid:22) (cid:0)!1 p K K p0 K p¤p0 canbesplitusingthecomposedmapT =(cid:22) !T !T !T =(cid:22) . Thismakes p0 K p0 K K K Q T =(cid:22) isomorphictotheproductof T andacyclicgroupforwhichthe K K p¤p0 p orderisaproductofprimepowersthatalready“occur”infinitelyofteninT . Thus K T =(cid:22) isisomorphictoaproductofexactlythesamegroups.(cid:90)=`k(cid:90)/(cid:90) thatoccur K K inT ,andthereforeisomorphictoT itself. (cid:3) K K ForimaginaryquadraticK,whereOy(cid:3)=(cid:22) constitutestheinertialpartU ofA K K K from(4),wesummarizetheresultsofthissectioninthefollowingway. 28 ATHANASIOSANGELAKISANDPETERSTEVENHAGEN Theorem3.5. LetK beanimaginaryquadraticfieldp. ThenthesubgroupTK=(cid:22)K ofU isadirectsummandofU . ForK ¤(cid:81).i/;(cid:81). (cid:0)2/,wehaveisomorphisms K K 1 U DOy(cid:3)=(cid:22) Š(cid:90)y2(cid:2).T =(cid:22) /Š(cid:90)y2(cid:2) Y (cid:90)=n(cid:90) K K K K nD1 ofprofinitegroups. p ForK equalto(cid:81).i/or(cid:81). (cid:0)2/,theprime2isexceptionalforK,andthegroups T =(cid:22) ŠT aredifferentastheydonothavecyclicsummandsoforder2and4, K K K respectively. 4. ExtensionsofGaloisgroups Intheprevioussection, allresultscouldeasily bestated andprovedforarbitrary numberfields. Fromnow on,K willdenote animaginary quadraticfield. Inorder todescribethefullgroupA from(3),weconsidertheexactsequence K 1(cid:0)!U DOy(cid:3)=(cid:22) (cid:0)!A DKy(cid:3)=K(cid:3)(cid:0) !Cl (cid:0)!1 (6) K K K K that describes the class group Cl of K in idelic terms. Here maps the class K of the finite idele .xp/p 2 Ky(cid:3) to the class of its associated ideal Qppep, with e Dord x . p p p Thesequence(6)showsthatU isanopensubgroupofA ofindexequaltothe K K classnumberh ofK. InviewofTheorem3.5,thisimmediatelyyieldsOnabe’s K discoverythatdifferentK canhavethesameabsoluteabelianGaloisgroup. p Theorem4.1. AnimaginaryquadraticnumberfieldK ¤(cid:81).i/;(cid:81). (cid:0)2/ofclass number1hasabsoluteabelianGaloisgroupisomorphicto G D(cid:90)y2(cid:2) Y (cid:90)=n(cid:90): n(cid:21)1 InOnabe’s paper[10, §5], thegroup G, whichis notexplicitlygivenbutcharac- terized by its infinitely many Ulm invariants, is referred to as ‘of type A’. We will refer to G as the minimal Galois group, as evepry absolute abelian Galois group of an imaginary quadratic field K ¤ (cid:81).i/;(cid:81). (cid:0)2/ contains a subgroup isomorphic to G. We will show that there are actuallymany more K having this absoluteabelianGaloisgroupthanthesevenfieldsK ofclassnumber1towhich theprecedingtheoremapplies. Now take for K any imaginary quadratic field of class number h >1. Then K Theorem3.5andthesequence(6)showthatA isanabeliangroupextensionof K Cl bytheminimalGaloisgroupG fromTheorem4.1. Iftheextension(6)were K split, we would find that A is isomorphic to G(cid:2)Cl ŠG; but it turns out that K K splittingatthislevelnever occursfornontrivialCl ,inthefollowingstrongsense. K

Description:
this that there exist nonisomorphic imaginary quadratic fields K and K0 for which the absolute abelian Galois groups AK and AK0 are isomorphic as
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.