Hydro Turbine and Governor Modelling Electric - Hydraulic Interaction Luz Alexandra Lucero Tenorio Master of Science in Electric Power Engineering Submission date: June 2010 Supervisor: Kjetil Uhlen, ELKRAFT Co-supervisor: Trond Toftevaag, SINTEF Energy Research Norwegian University of Science and Technology Department of Electric Power Engineering Problem Description Traditionally, mathematical models for hydraulic power plants, normally found in relevant literature and power system analysis tools are often simplified models. Approaches based on approximate linear models assuming an ideal lossless turbine and ignoring the elasticity of the conduit system, are not suitable for the accurate study of the interaction between hydraulic system and power system. This implies that these models only reflect part of the real situations and as such could have a limited application. Assignment given: 25. January 2010 Supervisor: Kjetil Uhlen, ELKRAFT Hydro Turbine and Governor Modelling Abstract This Master’s Thesis work deals with the development of improved hydro turbine models for the evaluation of a hydraulic power generating system performance in response to small disturbances in power system analysis tool. These improved models must be able to reflect the possible interaction between the hydraulic system and power system in the computer simulations of a power plant equipped with Francis turbines. The accuracy of a Hydraulic Power Generating System is studied by means of analysis of the dynamic behaviour of different models of the hydraulic machine and conduit system. The stability study of different models for Synchronous Machines and Turbine Governing System are beyond the scope of this work. Appropriate representations of the hydraulic turbine and conduit system are developed in various models of varying degrees of detail. Firstly, nonlinear models for a simple turbine without surge tank considering the inelastic and elastic travelling wave effects have been developed. After that, nonlinear models considering the inelastic and elastic travelling wave effects for a turbine with surge tank for Hydropower Systems with long length penstocks are implemented. Finally, the nonlinear models for a turbine with long length penstocks are linearized at an operating point considering both the nonlinear turbine characteristics and the travelling wave effects. The Master’s Thesis work is divided into three parts. The first part, comprising Chapters 2 to 8, reviews the physical characteristics and mathematical models of the components of a hydraulic power generating system. The influence of each component of the power system by means of appropriate mathematical models is essential for the understanding of system stability. The second part, comprising Chapters 9 to 11, deals with the dynamic study of the system stability characteristics of the different hydraulic power generating system models implemented in SIMPOW and LVTrans. Finally, the third part, Chapter 12 and Chapter 13, presents the discussion of the simulation results of the hydroelectric power system models, and draws general conclusions on this work and suggests possibilities for the approach further work, respectively. It was concluded that approaches based on nonlinear and linear models including the elasticity of the conduit system and the nonlinear turbine characteristics extracted from the Hill Charts, are the most accurate models for any acceptable study of the interaction between hydraulic system and power system. The study of dynamic performance and interaction between the hydraulic system and power system of these extended linear and nonlinear models including the elastic water hammer effect and varying the nonlinear characteristics of the hydraulic turbine must be studied in detail. ii Hydro Turbine and Governor Modelling Table of Contents Page ABSTRACT ............................................................................................................................................................... II TABLE OF CONTENTS .............................................................................................................................................. III LIST OF FIGURES ..................................................................................................................................................... VI LIST OF TABLES ....................................................................................................................................................... IX PREFACE .................................................................................................................................................................. X LIST OF SYMBOLS ................................................................................................................................................... XII 1 INTRODUCTION ............................................................................................................................................... 1 1.1 BACKGROUND INFORMATION ........................................................................................................................................... 1 1.2 OBJECTIVE .................................................................................................................................................................... 1 1.3 SCOPE ......................................................................................................................................................................... 1 1.4 OUTLINE OF THE PROJECT ................................................................................................................................................ 2 2 PRESSURE WATER CONDUIT SYSTEM ............................................................................................................... 3 2.1 HYDRAULIC TRANSIENTS FUNDAMENTALS .......................................................................................................................... 3 2.1.1 Pressure wave velocity in conduits .................................................................................................................... 4 2.1.2 Wave propagation and reflections in the conduit ............................................................................................. 4 2.1.3 Head losses due to Friction ............................................................................................................................... 5 2.2 CLOSED‐CONDUIT SYSTEMS ............................................................................................................................................. 6 2.2.1 Basic Assumptions ............................................................................................................................................. 6 2.2.2 Basic Differential Equations for Transient Flow ................................................................................................ 6 2.2.2.1 Equation of Continuity ................................................................................................................................................. 7 2.2.2.2 Equation of Motion ...................................................................................................................................................... 9 2.2.2.3 General Remarks ........................................................................................................................................................ 10 2.2.3 Mathematical Model ...................................................................................................................................... 11 2.3 PRESSURE CONTROL SYSTEMS ........................................................................................................................................ 15 2.3.1 Governing Equations ....................................................................................................................................... 15 2.3.2 Surge Tank Mathematical Model .................................................................................................................... 17 3 HYDRAULIC TURBINES ................................................................................................................................... 18 3.1 HYDRAULIC TURBINES OVERVIEW ................................................................................................................................... 18 3.1.1 Impulse turbines .............................................................................................................................................. 18 3.1.2 Reaction Turbines ............................................................................................................................................ 19 3.2 GENERAL TECHNICAL ASPECTS ....................................................................................................................................... 20 3.2.1 Neat Head, Power and Efficiency .................................................................................................................... 20 3.2.2 Turbine Hill Charts ........................................................................................................................................... 21 3.3 HYDRAULIC TURBINE MODELLING ................................................................................................................................... 22 3.3.1 Simplified Nonlinear Turbine model ................................................................................................................ 23 3.3.2 The linearized hydro turbine model ................................................................................................................ 23 4 SYNCHRONOUS MACHINE ............................................................................................................................. 26 4.1 SYNCHRONOUS GENERATOR .......................................................................................................................................... 26 4.2 SYNCHRONOUS GENERATOR EQUATIONS ......................................................................................................................... 27 4.3 SYNCHRONOUS GENERATOR MODELS .............................................................................................................................. 28 4.3.1 Synchronous Machine Represented by the Classical Model ........................................................................... 29 5 TURBINE GOVERNING SYSTEMS ..................................................................................................................... 30 5.1 GOVERNING SYSTEM .................................................................................................................................................... 30 5.2 MECHANICAL‐HYDRAULIC GOVERNOR ............................................................................................................................. 31 5.2.1 Mathematical Modelling ................................................................................................................................ 31 5.3 ELECTRO‐HYDRAULIC GOVERNING SYSTEM ....................................................................................................................... 34 5.3.1 Mathematical Model ...................................................................................................................................... 34 iii Hydro Turbine and Governor Modelling 6 HYDRAULIC POWER PLANT MODELS .............................................................................................................. 36 6.1 HYDROPOWER PLANT MODELS ...................................................................................................................................... 36 6.2 NONLINEAR TURBINE MODELS ....................................................................................................................................... 38 6.2.1 Simplified Nonlinear Turbine Model................................................................................................................ 38 6.2.2 Nonlinear Model without Surge Tank assuming Inelastic Water Column ....................................................... 39 6.2.3 Nonlinear Model without surge tank including Elastic Water Column Effect ................................................. 39 6.2.4 Nonlinear Model with Surge Tank assuming Inelastic Water Columns .......................................................... 40 6.2.5 Nonlinear Model with Surge Tank assuming Elastic Water Column in Penstock and Inelastic Water Column in Upstream Tunnel .................................................................................................................................................. 41 6.3 HYDRO TURBINE LINEAR MODELS ................................................................................................................................... 43 6.3.1 Linear Turbine Model with Surge Tank assuming Inelastic Water Columns ................................................... 43 6.3.2 Linear Turbine Model with Surge Tank assuming Elastic Water Column in Penstock ..................................... 44 7 HYDROELECTRIC POWER PLANT MODELLING BY STRUCTURE MATRIX METHOD ............................................. 46 7.1 DEFINITION OF THE METHOD ......................................................................................................................................... 46 7.2 MATRIX REPRESENTATIONS OF THE BASIC ELEMENTS IN HYDRO POWER SYSTEMS .................................................................... 47 7.2.1 Pipes and Tunnels............................................................................................................................................ 47 7.2.2 Surge tanks or air accumulators ..................................................................................................................... 47 7.2.3 Local Losses ..................................................................................................................................................... 48 7.2.4 Hydro Turbine ................................................................................................................................................. 49 7.2.4.1 Hydro Turbine Characteristics .................................................................................................................................... 49 7.2.4.2 Hydro Turbine Matrix Representation ....................................................................................................................... 50 7.2.5 The synchronous generator and the electric grid ............................................................................................ 52 7.2.6 Turbine Speed Governor .................................................................................................................................. 53 7.2.6.1 Traditional Governor .................................................................................................................................................. 53 7.2.6.2 PID Governor .............................................................................................................................................................. 54 7.3 COMPOSITION OF THE GLOBAL STRUCTURE MATRIX ........................................................................................................... 55 7.4 STRUCTURE MATRIX OF THE HYDRO TURBINE UNIT ............................................................................................................ 55 7.5 HYDRO POWER PLANT STRUCTURE MATRIX ...................................................................................................................... 56 7.6 DYNAMIC ANALYSIS ..................................................................................................................................................... 58 7.6.1 Frequency Response Analysis .......................................................................................................................... 58 7.6.2 Free Vibration Analysis .................................................................................................................................... 58 8 POWER SYSTEM STABILITY ANALYSIS ............................................................................................................. 59 8.1 POWER SYSTEM STABILITY ............................................................................................................................................. 59 8.1.1 Small‐Signal Stability Analysis ......................................................................................................................... 59 8.2 FUNDAMENTALS OF POWER SYSTEM STABILITY ................................................................................................................. 60 8.3 EIGENVALUE ANALYSIS.................................................................................................................................................. 61 8.3.1 Eigenvalues and Eigenvectors ......................................................................................................................... 61 8.3.2 Eigenvalue Analysis ......................................................................................................................................... 61 8.3.3 Modal and Sensitivity Analysis ........................................................................................................................ 62 8.4 SMALL‐SIGNAL STABILITY ANALYSIS OF A GENERATOR‐INFINITE BUS SYSTEM ............................................................................ 63 8.5 DYNAMIC ANALYSIS ..................................................................................................................................................... 64 8.5.1 Natural frequency analysis ............................................................................................................................. 64 8.5.2 Frequency Response Analysis .......................................................................................................................... 65 9 TEST SYSTEM MODEL ..................................................................................................................................... 66 9.1 OVERVIEW OF THE TEST SYSTEM ..................................................................................................................................... 66 9.2 MODELS OF THE DIFFERENT COMPONENTS ........................................................................................................................ 67 9.2.1 Power Plant Model .......................................................................................................................................... 67 9.2.2 Hydraulic Turbine ............................................................................................................................................ 68 9.2.3 Synchronous Generator ................................................................................................................................... 69 9.2.4 Governing Systems for Hydraulic Turbines ..................................................................................................... 70 9.3 POWER FLOW ANALYSIS ............................................................................................................................................... 70 9.4 POWER SYSTEM STABILITY ANALYSIS – THEORETICAL RESULTS ............................................................................................. 71 9.4.1 Eigenvalue Analysis ......................................................................................................................................... 71 9.4.2 Natural frequency analysis ............................................................................................................................. 72 10 DYNAMIC SIMULATIONS IN SIMPOW ............................................................................................................. 73 iv Hydro Turbine and Governor Modelling 10.1 MODEL 1: SIMPLIFIED NONLINEAR TURBINE MODEL ...................................................................................................... 74 10.1.1 Eigenvalue Analysis ....................................................................................................................................... 74 10.1.2 Dynamic Simulation Analysis ........................................................................................................................ 75 10.1.3 Frequency Response Analysis ........................................................................................................................ 76 10.2 MODEL 2: NONLINEAR TURBINE MODEL WITHOUT SURGE TANK ASSUMING INELASTIC WATER COLUMN ................................. 79 10.2.1 Eigenvalue Analysis ....................................................................................................................................... 79 10.2.2 Dynamic Response Analysis .......................................................................................................................... 80 10.2.3 Frequency Response Analysis ........................................................................................................................ 81 10.3 MODEL 3: NONLINEAR TURBINE MODEL WITHOUT SURGE TANK INCLUDING ELASTIC WATER COLUMN EFFECTS ........................ 84 10.3.1 Eigenvalue Analysis ....................................................................................................................................... 84 10.3.2 Dynamic Simulation Analysis ........................................................................................................................ 85 10.3.3 Frequency Response Analysis ........................................................................................................................ 86 10.4 MODEL 4: NONLINEAR TURBINE MODEL WITH SURGE TANK ASSUMING INELASTIC WATER COLUMNS ..................................... 89 10.4.1 Eigenvalue Analysis ....................................................................................................................................... 89 10.4.2 Dynamic Simulation Analysis ........................................................................................................................ 90 10.4.3 Frequency Response Analysis ........................................................................................................................ 91 10.5 MODEL 5: NONLINEAR MODEL WITH SURGE TANK ASSUMING ELASTIC WATER COLUMN IN PENSTOCK AND INELASTIC WATER COLUMN IN TUNNEL .......................................................................................................................................................... 94 10.5.1 Eigenvalue Analysis ....................................................................................................................................... 94 10.5.2 Dynamic Simulation Analysis ........................................................................................................................ 95 10.5.3 Frequency Response Analysis ........................................................................................................................ 96 10.6 MODEL 6: LINEAR TURBINE MODEL WITH SURGE TANK ASSUMING INELASTIC WATER COLUMNS ............................................ 99 10.6.1 Eigenvalue Analysis ....................................................................................................................................... 99 10.6.2 Dynamic Simulation Analysis ...................................................................................................................... 100 10.6.3 Frequency Response Analysis ...................................................................................................................... 101 10.7 MODEL 7: LINEAR TURBINE MODEL WITH SURGE TANK ASSUMING ELASTIC WATER COLUMN IN PENSTOCK ........................... 104 10.7.1 Eigenvalue Analysis ..................................................................................................................................... 104 10.7.2 Dynamic Simulation Analysis ...................................................................................................................... 105 10.7.3 Frequency Response Analysis ...................................................................................................................... 106 11 POWER SYSTEM MODELLED IN LVTRANS ..................................................................................................... 109 11.1 DESCRIPTION OF LVTRANS ........................................................................................................................................ 109 11.2 HYDRAULIC SYSTEM MODELLING ................................................................................................................................ 110 11.3 DYNAMIC SIMULATION ............................................................................................................................................. 111 11.3.1 Frequency Response Analysis computed in LVTrans8_1.1.2 ....................................................................... 112 11.3.2 Frequency Response Analysis computed in LVTrans86_1.3.1_T ................................................................. 114 11.3.3 Comparison of the Frequency Response Analysis of the Hydraulic Power Plant computed in LVTrans8_1.1.2 and LVTrans86_1.3.1_T ......................................................................................................................................... 114 12 DISCUSSION ................................................................................................................................................ 117 12.1 SUMMARY OF SIMULATION RESULTS OF THE MODELS COMPUTED IN SIMPOW ................................................................... 117 12.2 SUMMARY OF THE EIGENVALUE ANALYSIS COMPUTED IN SIMPOW .................................................................................. 118 12.3 COMPARISON OF THE RESULTS OF THE MODELS IN SIMPOW ........................................................................................... 119 12.3.1 Comparison of Nonlinear Turbine Models without surge tank ................................................................... 119 12.3.2 Comparison of Turbine Models with Surge Tank ........................................................................................ 122 12.4 COMPARISON OF THE SIMULATION RESULTS COMPUTED IN SIMPOW AND LVTRANS ........................................................... 125 13 CONCLUSIONS ............................................................................................................................................. 127 13.1 CONCLUSIONS ......................................................................................................................................................... 127 13.2 FURTHER WORK ...................................................................................................................................................... 129 14 REFERENCE BIBLIOGRAPHY .......................................................................................................................... 130 v Hydro Turbine and Governor Modelling List of Figures Figure 2‐1: Control volume for the derivation of the equation of continuity ..................................... 7 Figure 2‐2: Control volume for the derivation of the equation of motion .......................................... 9 Figure 2‐3: Simple surge tank, [6] ...................................................................................................... 16 Figure 3‐1: Impulse Turbine ............................................................................................................... 18 Figure 3‐2: Francis Turbine ................................................................................................................ 19 Figure 3‐3: Schematic of Hydraulic Power Plant with a reaction turbine ......................................... 20 Figure 3‐4: Functional Block Diagram of the hydro turbine, [1, 28] .................................................. 22 Figure 4‐1: Equivalent circuit of the classical model of the generator .............................................. 29 Figure 5‐1: Schematic diagram of the Governing System, [48] ......................................................... 31 Figure 5‐2: Mechanical‐Hydraulic Governing System. [47] ............................................................... 31 Figure 5‐3: Model of governor for hydraulic turbines, [2]................................................................. 33 Figure 5‐4: Typical PID Governor Controller, [2] ............................................................................... 34 Figure 6‐1: Functional Block Diagram of the Hydraulic Turbine Generating System ........................ 37 Figure 6‐2: Simplified Nonlinear Turbine Model ............................................................................... 38 Figure 6‐3: Nonlinear Model without Surge Tank assuming Inelastic Water Column ...................... 39 Figure 6‐4: Nonlinear Model without surge tank including Elastic Water Column Effect ................ 40 Figure 6‐5: Nonlinear Model with Surge Tank assuming Inelastic Water Columns .......................... 41 Figure 6‐6: Nonlinear Model with surge tank assuming elastic water column in penstock and inelastic water column in upstream tunnel ..................................................................... 42 Figure 6‐7: Linear Model with Surge Tank assuming Inelastic Water Columns ................................ 44 Figure 6‐8: Linear Model with Surge Tank assuming Elastic Water Column in Penstock ................. 45 Figure 7‐1: Layout of Hydro Power Plant for Structure Matrix Method Modelling .......................... 56 Figure 9‐1: Single machine infinite bus power system ...................................................................... 66 Figure 9‐2: A general Layout of Hydro Power Plant, [19] .................................................................. 67 Figure 9‐3: Circuit model of the test system ..................................................................................... 71 Figure 10‐1: Fault simulation results: (a) angle, (b) speed, (c) mechanical torque, (d) gate position, (e) flow rate and (f) head pressure of Model 1 ................................................ 75 Figure 10‐2: Frequency response of the transfer function from Gate position to Mechanical Power of model 1 ............................................................................................................. 76 Figure 10‐3: Frequency response of the transfer function from Gate position to Mechanical Torque of Model 1 ........................................................................................................... 77 Figure 10‐4: Frequency response of the transfer function of the conduit system of Model 1 ......... 77 Figure 10‐5: Frequency response of the transfer function from gate position to electrical angle of Model 1 ........................................................................................................................ 78 Figure 10‐6: Frequency response of the transfer function of the mechanical‐hydraulic governor of Model 1 ........................................................................................................ 78 Figure 10‐7: Fault simulation Results: (a) Power angle, (b) Speed, (c) Mechanical Torque, (d) Gate Position, (e) Flow Rate and (f) Head Pressure of Model 2 ...................................... 80 Figure 10‐8: Frequency response of the transfer function from Gate position to Mechanical Power of Model 2............................................................................................................. 81 Figure 10‐9: Frequency response of the transfer function from Gate position to Mechanical Torque of Model 2 ........................................................................................................... 82 Figure 10‐10: Frequency response of the transfer function of the conduit system of Model 2 ....... 82 Figure 10‐11: Frequency response of the transfer function from Gate position to Electrical Angle of Model 2 .............................................................................................................. 83 vi Hydro Turbine and Governor Modelling Figure 10‐12: Frequency Response of the transfer function of the mechanical‐hydraulic governor of Model 2 ........................................................................................................ 83 Figure 10‐13: Fault simulation results: (a) angle, (b) speed, (c) mechanical torque, (d) gate position, (e) flow rate and (f) water pressure of Model 3 ............................................... 85 Figure 10‐14: Frequency response of the transfer function from Gate position to Mechanical Power of Model 3............................................................................................................. 86 Figure 10‐15: Frequency response of the transfer function from Gate position to Mechanical Torque of Model 3 ........................................................................................................... 87 Figure 10‐16: Frequency Response of the transfer function of the conduit system of Model 3 ...... 87 Figure 10‐17: Frequency response of the transfer function from Gate position to Electrical Angle of Model 3 .............................................................................................................. 88 Figure 10‐18: Frequency Response of the transfer function of the mechanical‐hydraulic governor of Model 3 ........................................................................................................ 88 Figure 10‐19: Fault simulation results: (a) angle, (b) Speed, (c) Mechanical Torque, (d) Gate Position, (e) Flow Rate and (f) Head Pressure of Model 4 ............................................... 90 Figure 10‐20: Frequency response of the transfer function from Gate position to Mechanical Power of Model 4............................................................................................................. 91 Figure 10‐21: Frequency response of the transfer function from Gate position to Mechanical Torque of Model 4 ........................................................................................................... 92 Figure 10‐22: Frequency Response of the transfer function of the conduit system of Model 4 ...... 92 Figure 10‐23: Frequency response of the transfer function from Gate position to Electrical Angle of Model 4 .............................................................................................................. 93 Figure 10‐24: Frequency Response of the transfer function of the mechanical‐hydraulic governor of Model 4 ........................................................................................................ 93 Figure 10‐25: Fault simulation Results: (a) angle, (b) Speed, (c) mechanical torque, (d) gate position, (e) flow rate and (f) water pressure of Model 5 ............................................... 95 Figure 10‐26: Frequency response of the transfer function from Gate position to Mechanical Power of Model 5............................................................................................................. 96 Figure 10‐27: Frequency response of the transfer function from Gate position to Mechanical Torque of Model 5 ........................................................................................................... 97 Figure 10‐28: Frequency Response of the transfer function of the conduit system of Model 5 ...... 97 Figure 10‐29: Frequency response of the transfer function from Gate position to Electrical Angle of Model 5 .............................................................................................................. 98 Figure 10‐30: Frequency Response of the transfer function of the mechanical‐hydraulic governor of Model 5 ........................................................................................................ 98 Figure 10‐31: Fault simulation Results: (a) angle, (b) speed, (c) mechanical torque, (d) gate position, (e) flow rate and (f) water pressure of Model 6 ............................................. 100 Figure 10‐32: Frequency response of the transfer function from Gate position to Mechanical Power of Model 6........................................................................................................... 101 Figure 10‐33: Frequency response of the transfer function from Gate position to Mechanical Torque of Model 6 ......................................................................................................... 102 Figure 10‐34: Frequency Response of the transfer function of the conduit system of Model 6 .... 102 Figure 10‐35: Frequency response of the transfer function from Gate position to Electrical Angle of Model 6 ............................................................................................................ 103 Figure 10‐36: Frequency Response of the transfer function of the mechanical‐hydraulic governor of Model 6 ...................................................................................................... 103 Figure 10‐37: Fault simulation Results: (a) Power angle, (b) Speed, (c) Mechanical Torque, (d) Gate Position, (e) Flow Rate and (f) Head Pressure of Model 7 .................................... 105 vii
Description: