ebook img

Homotopy theory of coalgebras over operads PDF

0.44 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Homotopy theory of coalgebras over operads

HOMOTOPY THEORY OF COALGEBRAS OVER OPERADS 6 0 JUSTINR.SMITH 0 2 Abstra t. Thispaper onstru tsmodelstru tures onthe ategoriesof oal- t c gebras and pointed irredu ible oalgebras over an operad whose omponents O are proje tive, (cid:28)nitely generated in ea h dimension, and satisfy a ondition that allows one to take tensor produ ts with a unit interval. The underly- 3 ing hain- omplex is assumed to be unbounded and the results for bounded oalgebras over anoperadare derivedfromtheunbounded ase. ] T C . h t a Contents m 1. Introdu tion 1 [ 2. Notation and onventions 3 4 3. The general ase 9 v 4. The bounded ase 20 7 5. Examples 21 1 Appendix A. Nearly free modules 21 3 5 Appendix B. Category-theoreti onstru tions 24 0 B.1. Cofree- oalgebras 24 3 B.2. Core of a module 27 0 B.3. Categori al produ ts 29 / h B.4. Limits and olimits 31 t Referen es 39 a m : v i X 1. Introdu tion r a Althoughtheliterature ontainsseveralpapersonhomotopytheoriesforalgebras over operads (cid:22) see [14℄, [17℄, and [18℄ (cid:22) it is more sparse when one pursues similar results for oalgebras. In [20℄, Quillen developed a model stru ture on the ategory of 2- onne ted o ommutative oalgebras over the rational numbers. V. Hini h extended this in [13℄ to oalgebras whose underlying hain- omplexes were unbounded (i.e., extended into negative dimensions). Expanding on Hini h's methods, K. Lefèvre derived a model stru ture on the ategory of oasso iative oalgebras (cid:22) see [15℄. In general, these authors use indire t methods, relating of oalgebra ategories to other ategories with known model stru tures. Date:8thFebruary 2008. 1991 Mathemati s Subje tClassi(cid:28) ation. Primary18G55;Se ondary 55U40. Key words and phrases. operads, ofree oalgebras. 1 HOMOTOPY THEORY OF COALGEBRAS JUSTIN R. SMITH Ourpaper(cid:28)ndsmodelstru turesfor oalgebrasoveranyoperadful(cid:28)llingabasi requirement ( ondition 3.5). Sin e operads uniformly en ode many diverse oal- gebra stru tures ( oasso iative-, Lie-, Gerstenhaber- oalgebras, et .), our results have wide appli ability. Several unique problems arise that require spe ial te hniques. For instan e, onstru ting inje tive resolutions of oalgebrasnaturally leads into in(cid:28)nitely many negative dimensions. The resulting model stru ture (cid:22) and even that on the un- derlying hain- omplexes (cid:22) fails to be o(cid:28)brantly generated (see [5℄). Wedevelopthegeneraltheoryforunbounded oalgebras,andderivethebounded results by applying a trun ation fun tor. InŸ2,wede(cid:28)neoperadsand oalgebrasoveroperads. Wealsogiveabasi ondi- tion(see3.5)ontheoperadunder onsiderationthatweassumetoholdthroughout thepaper. This onditionissimilarto thatofadmissibility ofBergerandMoerdijk in [2℄. Co(cid:28)brant operads always satisfy this ondition and every operad is weakly equivalent to one that satis(cid:28)es this ondition. In Ÿ 3, we brie(cid:29)y re all the notion of model stru ture on a ategory and de(cid:28)ne model stru tures on two ategories of oalgebras over operads. When the operad is proje tive and (cid:28)nitely-generated in all dimensions, we verify that nearly free oalgebrassatisfy Quillen's axioms of a model stru ture (see [19℄ or [11℄). A key step involves proving the existen e of o(cid:28)brant and (cid:28)brant repla ements for obje ts. In our model stru ture, all oalgebras are o(cid:28)brant (solving this half of the problem) and the hard part of is to (cid:28)nd (cid:28)brant repla ements. Wedevelopresolutionsof oalgebrasby ofree oalgebrasthatsolvestheproblem (cid:22) see lemma 3.16 and orollary 3.17. This onstru tion naturally leads into in- (cid:28)nitelymany negativedimensions and wasthe motivationforassumingunderlying hain- omplexes are unbounded. Fibrant oalgebrasare hara terizedas retra ts of layered oalgebras (see de(cid:28)n- ition 3.18 and orollary 3.19) (cid:22) an analogue to total spa es of Postnikov towers. In the o ommutative ase over the rational numbers, the model stru ture that we get is not equivalent to that of Hini h in [13℄. He gives an example (9.1.2) of a oalgebrathatisa y li butnot ontra tible. Inourtheoryitwould be ontra tible, sin e it is over the rational numbers and bounded. InŸ4,wedis ussthe(minor) hangestothemethodsinŸ3tohandle oalgebras thatareboundedfrombelow. Thisinvolvesrepla ingthe ofree oalgebrasbytheir trun ated versions. In Ÿ 5, we onsider two examples over the rational numbers. In the rational, 2- onne ted, o ommutative, oasso iative ase, we re over the model stru ture Quillen de(cid:28)ned in [20℄ (cid:22) see example 5.2. Z InappendixA,westudynearly free -modules. Thesearemoduleswhose ount- Z able submodules are all -free. They take the pla e of free modules in our work, sin e the ofree oalgebra on a free modules is not free (but is nearly free). In appendix B, we develop essential ategory-theoreti onstru tions, in luding equalizers (Ÿ B.2), produ ts and (cid:28)bered produ ts (Ÿ B.3), and olimits and limits (Ÿ B.4). The onstru tion of limits in Ÿ B.4 was this proje t's most hallenging aspe t and onsumed the bulk of the time spent on it. This se tion's key results are orollary B.21, whi h allows omputation of inverse limits of oalgebras and theorem B.23, whi h shows that these inverse limits share a basi property with those of hain- omplexes. 2 HOMOTOPY THEORY OF COALGEBRAS JUSTIN R. SMITH I am indebted to Professor Bernard Keller for severaluseful dis ussions. 2. Notation and onventions R Z Throughout this paper, will denote a (cid:28)eld or . R M De(cid:28)nition 2.1. An -module will be alled nearly free if every ountable R submodule is -free. R=Z Remark. This ondition is automati ally satis(cid:28)ed unless . Z Zℵ0 Clearly,any -freemoduleisalsonearlyfree. The Baer-Spe kergroup, , isa Z well-known example of a nearly free -module that is not free (cid:22) see [10℄, [1℄, and ℵ 1 [23℄. Compare this with the notion of -free groups (cid:22) see [4℄. By abuse of notation, we will often all hain- omplexes nearly free if their underlying modules are (ignoring grading). Z Nearly free -modules enjoy useful properties that free modules do not. For instan e, in many interesting ases, the ofree oalgebra of a nearly free hain- omplex is nearly free. De(cid:28)nition 2.2. WeRwill denote the losed sRymmetri monoidal aCtehg(oRr)y of un- bounded, nearly free - hain- omplexes with -tensor produ ts by . We make extensive use of the Koszul Convention (see [12℄) regarding signs in homologi al al ulations: f:C →D g:C →D a⊗b∈C ⊗C a 1 1 2 2 1 2 De(cid:28)nition2.3. If , aremaps,and (where (f⊗g)(a⊗b) (−1)deg(g)·deg(a)f(a)⊗ isahomogeneouselement),then isde(cid:28)nedtobe g(b) . f g i i Remark 2.4.(fIf ⊗,g )◦ar(efm⊗apgs,)i=t i(s−n'1t)hdeagr(df2)t·odevg(egr1i)f(yfth◦aft t⊗hegK◦osgzu)l onvention 1 1 2 2 1 2 1 2 implies that . I De(cid:28)nition 2.5. The symbol willdenotetheunitinterval, a hain- omplexgiven by I = R·p ⊕R·p 0 0 1 I = R·q 1 I = 0 k 6=0,1 k if A∈Ch(R) Given , we an de(cid:28)ne A⊗I and Cone(A)=A⊗I/A⊗p 1 The set of morphisms of hain- omplexes is itself a hain omplex: A,B ∈Ch(R) De(cid:28)nition 2.6. Given hain- omplexes de(cid:28)ne Hom (A,B) R R to be the hain- omplex of graded -morphisms where the degree of an element x∈Hom (A,B) R is its degree as a map and with di(cid:27)erential ∂f =f ◦∂ −(−1)degf∂ ◦f A B R Hom (A,B) = Hom (A ,B ) As a -module R k j R j j+k . Q 3 HOMOTOPY THEORY OF COALGEBRAS JUSTIN R. SMITH Remark. Given A,B ∈Ch(R)Sn, we an de(cid:28)ne HomRSn(A,B) in a orresponding way. De(cid:28)nition 2.7. De(cid:28)ne: Set Set2 (1) f tobethe ategoryof(cid:28)nitesetsandbije tions. Let f bethe ategory of (cid:28)nite sets whose elements are also (cid:28)nite sets. Morphisms are bije tions ofsetsthatrespe tthe(cid:16)(cid:28)nestru ture(cid:17) ofelementsthatarealsosets. There is a forgetful fun tor f:Set2 →Set f f Set2 that simply forgets that the elements of an obje t of f are, themselves, (cid:28)nite sets. There is also a (cid:16)(cid:29)attening(cid:17) fun tor g:Set2 →Set f f that sends a set (of sets) to the union of the elements (regarded as sets). X Σ =End (X) (2) FSeotr a−(cid:28)mnoitde set , X Setf . Func(Setop,Ch(R)) (3) f tobethe ategoryof ontravariantfun tors f , with morphisms that are natural transformations. C, D ∈Set −mod Hom(C,D) f (4) Given , de(cid:28)ne to be the setof natural trans- Hom (C,D) X ∈ Set formations of fun tors. Also de(cid:28)ne X , where f, to be C D X the natural transformations of and restri ted to sets isomorphi to (i.e., of the same ardinality). Both of these fun tors are hain- omplexes. Σ−mod {M(n)} m ≥ 1 M(n) ∈ (5) Ch(R) to bMe(tnh)e ategory of sequen es S , where n and is equipped with a right -a tion. [n] n Σ = S [n] n Remark. If is the set of the (cid:28)rst positive integers, then , the sym- M Set X f metri group. If is a -module then, for ea h (cid:28)nite set, , there is a right Σ M(X) X -a tion on . S =S ={1} 0 1 We follow the onvention that , the trivial group. Σ−mod Noate=th{a{tx},{y,z,ti}s,w{hh}a}t ∈is oSfette2n alledf(tah)e∼= a[t3e]gory of olle tions. g(aI)f={x,y,z,t,h} f then , a set of three elements, and . Set −mod Σ−mod f It is well-known that the ategories and are isomorphi (cid:22) see se tion 1.7 in part I of [18℄. The restri tion isomorphism r:Set −mod→Σ−mod f [n] n ≥ 1 F ∈ simply involves evaluating fun tors on the (cid:28)nite sets for all . If Set −mod r(F) = {F([n])} F F([n]) f , then . The fun torial nature of implies that S Hom (C,D) is equipped with a natural n-a tion. The fun tors n orrespond to Hom (C([n]),D([n])) Set RSn and the fa t that morphisms in f preserve ardinality imply that Hom(C,D)= Hom (C,D) n n≥0 Y Set f Although -modules are equivalent to modules with a symmetri group a - Set −mod f tion, it is often easier to formulate operadi onstru tions in terms of . Equivarian e relations are automati ally satis(cid:28)ed. X n X De(cid:28)nition 2.8. If is a (cid:28)nite set of ardinality the set of orderings of is Ord(X)={f|f:X −∼=→[n]} 4 HOMOTOPY THEORY OF COALGEBRAS JUSTIN R. SMITH Set X f Nowwedne(cid:28)nea analogueto themultiCple∈teCnsho(rRp)rodu t. Given asext∈Xof x ardinality , andanassignmentofanobje t forea helement , g ∈Ord(X) we an de(cid:28)ne, for ea h a produ t Cx =Cg−1(1)⊗···⊗Cg−1(n) g O The symmetry of tensor produ ts determines a morphism σ¯: C → C x x g σ◦g O O σ ∈S ±1 n for ea h whi h essentially permutes fa tors and multiplies by , following the Koszul Convention in de(cid:28)nition 2.3. De(cid:28)nition 2.9. The unordered tensor produ t is de(cid:28)ned by C =coequalizer σ¯: C → C x x x   OX σ∈Sn  g∈OMrd(X)Og g∈OMrd(X)Og  C ∈Ch(R) X ∈Set CX If and fthen will denote the unordered tensor produ t C X O C X C⊗ Set f of opiesof indexedbyelementsof ,and willdenotethe -modulewhose X ∈Set CX f value on is . X·C n C n We use to denote a dire t sum of opies of , where isthe ardinality X of a (cid:28)niteXse∈t Se.t2 f When , C X O f(X) X is regardedas being taken over (cid:22) i.e., we (cid:16)forget(cid:17) that the elements of are sets themselves. Ch(R) Remark. The unordered tensor produ t is isomorphi (as an obje t of to C x X x the tensor produ t of the , as runs over the elements of . The oequalizer onstXru =tio[nn]determCin[ne]s=hoCwnthe it behavCesXw⊗ithCrYes=peC tXt⊔oYset-mXor,pYhis∈mSs.et f If , then . Note that , for . We C∅ = =R 0 also follow the onvention that 1 , on entrated in dimension . X ∈Set x∈X {f :V →U } Ch(R) f y y y De(cid:28)nition 2.10. If , and are morphisms of y ∈X indexed by elements then de(cid:28)ne (U,V)= Z −1−⊗−·−··⊗−−fx−⊗−·−··⊗−→1 U y y X,x y∈X y∈X O O O to be the unordered tensor produ t, where U y 6=x y Zy = if (Vy u=x if X Remark. Given any ordering of the elements of the set , there exists a anoni al isomorphism (U,V)=U ⊗···⊗V ⊗···⊗U OX,x x position | {z } 5 HOMOTOPY THEORY OF COALGEBRAS JUSTIN R. SMITH X,Y ∈Set x∈X f De(cid:28)nition 2.11. Let and let . De(cid:28)ne X ⊔ Y =(X \{x})∪Y x X ⊔ ∅=X\{x} x Remark. Note that . X, Y, Z ∈Set xx , X ∈X y ∈Y f 1 2 Proposition. If , and and , then X ⊔ (Y ⊔ Z) = (X ⊔ Y)⊔ Z x y x y (X ⊔ Y)⊔ Z = (X ⊔ Z)⊔ Y x1 x2 x2 x1 Ch(R) Set C f De(cid:28)nition 2.12. An operad in is a -module, equipped with opera- tions ◦ :C(X)⊗C(Y)→C(X ⊔ Y) x x x∈X X, Y ∈Set f for all and all and satisfying the two axioms (1) Asso iativity: ◦ (1⊗◦ )=◦ (◦ ⊗1): x y y x C(X)⊗C(Y)⊗C(Z)→C(X ⊔ (Y ⊔ Z)) x y ◦ (◦ ⊗1)=◦ (◦ ⊗1)(1⊗τ): x2 x1 x1 x2 C(X)⊗C(Y)⊗C(Z)→C((X ⊔ Y)⊔ Z) x1 x2 X, Y, Z ∈ Set x, x , x ∈ X y ∈ Y τ:C(Y)⊗ f 1 2 for all and all and , where C(Z)→C(Z)⊗C(Y) is the transposition isomorphism. η : → C({x}) {x} ∈ x (2) Unit: There exist morphisms 1 for all singleton sets Set f that make the diagrams C(X)⊗ ∼= //C(X) ⊗C(X) ∼= //C(X) 1⊗ηx (cid:15)(cid:15) q1qqqq◦qxqqqq88 η1x⊗1(cid:15)(cid:15) ssssss◦sxsss99 C(X)⊗C(x) C(X) X ∈ Set f ommute, for all . The operad will be alled nonunital if the axioms above only hold for nonempty sets. Remark. See theorem1.60and 1.61and se tion1.7.1of [18℄ forthe proofthat this de(cid:28)nes operads orre tly. For more traditional de(cid:28)nitions, see [22℄, [14℄. This is basi ally the de(cid:28)nition of a pseudo-operad in [18℄ where we have added the unit nth axiom. To translate this de(cid:28)nition into the more traditional ones, set the C([n]) omponent of the operad to . Set −mod f The use of auses the equivarian e onditions in [14℄ to be automat- i ally satis(cid:28)ed. The operads we onsider here orrespond to symmetri operads in [22℄. The term (cid:16)unital operad(cid:17) is used in di(cid:27)erent ways by di(cid:27)erent authors. We use 0 itinthesenseofKrizandMayin[14℄,meaningtheoperadhasa - omponentthat C(∅)= a ts like an arity-loweringaugmentation under ompositions. This is 1. A simple example of an operad is: X C(X)=ZΣ X Example 2.13. Forea h(cid:28)niteset, , , with ompositionde(cid:28)nedby S n 0 th in lusion of sets. This operad is denoted . In other notation, its omponent ZS n is the symmetri group-ring . 6 HOMOTOPY THEORY OF COALGEBRAS JUSTIN R. SMITH For the purposes of this paper, the anoni al example of an operad is C ∈ Ch(R) De(cid:28)nition 2.14. Given any , the asso iated oendomorphism operad, CoEnd(C) is de(cid:28)ned by CoEnd(C)(X)=Hom (C,CX) R X ∈Set CX = C for f, and X is the unordered tensor produ t de(cid:28)ned in de(cid:28)ni- {◦ } x tion 2.9. The ompositionNs are de(cid:28)ned by ◦ :Hom (C,CX)⊗Hom (C,CY)→ x R R Hom (C,CX\{x}⊗C ⊗Hom (C,CY))−H−o−m−R−(−1−,1−⊗−e→) R x R Hom (C,CX\{x}⊗CY))=Hom (C,CX⊔xY) R R C C x∈X e:C ⊗Hom (C,CY)→CY x x R where isthe opyof orrespondingto and C ∈Ch(R) is the evaluation morphism. This is a non-unital operad, but if has an ε:C → augmentation map 1 then we an set CoEnd(C)(∅)= 1 and ◦ :Hom (C,CX)⊗Hom (C,C∅)=Hom (C,CX)⊗ x R R R 1 −H−o−m−R−(−1,−1X−−\{−x−}⊗−ε−x→) Hom (C,CX\{x}) R 1 :CX\{x} → CX\{x} ε :C → X\{x} x x where is the identity map and 1 is the aug- C x∈X mentationC, a∈pCplhie(dRt)o the opy of ind{eDxed,.b.y.,D } . 1 k Given withsub omplexes ,therelative oendomorphism CoEnd(C;{D }) CoEnd(C) i operadf ∈Hom (C,CX)is de(cid:28)ned tfo(bDe)th⊆eDsuXb-⊆opCerXad of j onsisting of maps R su h that j j for all . We use the oendomorphism operad to de(cid:28)ne the main obje t of this paper: V C ∈ Ch(R) De(cid:28)nition 2.15. A oalgebra over an operad is a hain- omplex α:V → CoEnd(C) with an operad morphism , alled its stru ture map. We will sometimes want to de(cid:28)ne oalgebrasusing the adjoint stru ture map α¯:C →Hom(V,C⊗) Ch(R)) (in or even the set of hain-maps α¯ :C →Hom (V(X),CX) X X X ∈Set f for all . We an also de(cid:28)ne the analogueof an ideal: C U De(cid:28)nition 2.16. Let be a oalgebra over the operad with adjoint stru ture map α:C →Hom(U,C⊗) D ⊆ ⌈C⌉ D and let be a sub- hain omplex that is a dire t summand. Then will C be alled a oideal of if the omposite α|D:D →Hom(U,C⊗)−H−o−m−(−1U−,−p−⊗→) Hom(U,(C/D)⊗) p:C →C/D Ch(R) vanishes, where is the proje tion to the quotient (in ). 7 HOMOTOPY THEORY OF COALGEBRAS JUSTIN R. SMITH Remark. Notethatitiseasierforasub- hain- omplextobea oidealofa oalgebra than to be an ideal of an algebra. For instan e, all sub- oalgebras of a oalgebra are also oideals. Consequently it is easy to form quotients of oalgebrasand hard to form sub- oalgebras. This is dual to what o urs for algebras. V We will sometimeswantto fo uson aparti ular lassof - oalgebras: the poin- ted, irredu ible oalgebras. We de(cid:28)ne this on ept in a way that extends the on- ventional de(cid:28)nition in [24℄: V De(cid:28)nition 2.17. Givena oalgebraoveraunitaloperad withadjointstru ture- map a :C →Hom (V(X),CX) X X c∈C a (c)=f (cX) n>0 cX ∈CX X X anelement is alledgroup-like if forall . Here n R n X is the -fold -tensor produ t, where is the ardinality of , f =Hom (ǫ ,1):Hom ( ,CX)=CX →Hom (V(X),CX) X R X R 1 X ǫ :V(X) → V(∅) = = R n X and 1 is the augmentation (whi h is -fold omposition V(∅) with ). C V A oalgebra over an operad is alled pointed if it has a unique group-like 1 element (denoted ), and pointed irredu ible if the interse tion of any two sub- oalgebras ontains this unique group-likeelement. V C Remark. Notethatagroup-likeelementgeneratesasub - oalgebraof andmust 0 lie in dimension . Althoughthisde(cid:28)nitionseems ontrived,itarisesin(cid:16)nature(cid:17): The hain- omplex of a pointed, simply- onne tedredu ed simpli ial set is naturallya pointed irredu- S = {C(K(S ,1))} n ible oalgebra over the Barratt-E les operad, (see [21℄). In this ase, the operad a tion en odes the hain-level e(cid:27)e t of Steenrod operations. D V Proposition 2.18. Let be a pointed, irredu ible oalgebra over an operad . Then the augmentation map ε:D →R is naturally split and any morphism of pointed, irredu ible oalgebras f:D →D 1 2 is of the form 1⊕f¯:D =R⊕kerε →D =R⊕kerε 1 D1 2 D2 ε :D →R i=1,2 i i where , are the augmentations. R·1⊆D i Proof. Thede(cid:28)nition(2.17)ofthesub- oalgebra isstatedinaninvariant way, so that any oalgebra morphism must preserve it. Any morphism must also 0th preserve augmefntations be kaeursεe the akuegrmεentation is the -order stru ture-map(cid:3). Consequently, must map D1to D2. The on lusion follows. V S 0 De(cid:28)nition 2.19. We denote the ategory of nearly free oalgebrasover by . V V C If isunital,every - oalgebra, , omesequippedwitha anoni alaugmentation ε:C →R R V so the terminal obje t is . If is not unital, the terminal obje t in this ategory 0 is , the null oalgebra. V I 0 The ategory of nearly free pointed irredu ible oalgebras over is denoted V (cid:22) this is only de(cid:28)ned if is unital. Its terminal obje t is the oalgebra whose R 0 underlying hain omplex is on entrated in dimension . 8 HOMOTOPY THEORY OF COALGEBRAS JUSTIN R. SMITH We also need: A ∈ C = I S ⌈A⌉ 0 0 De(cid:28)nitionC2h.2(0R.)If or , then denotes the underlying hain- omplex in of kerA→t t C ⌈∗⌉ where denotes the terminCal obCjeh (tRin) (cid:22) see de(cid:28)nition 2.19. We will all the forgetful fun tor from to . We will use the on ept of ofree oalgebra ogenerated by a hain omplex: C ∈Ch(R) V V G De(cid:28)nition 2.21. Let and let be an operad. Then a - oalgebra C will be alled the ofree oalgebra ogenerated by if ε:G→C (1) there exists a morphism of DG-modules V D f:D → C (2) given any - oalgebra and anyVmorphism offˆ:DDG→-mGodules , there existsaunique morphismof - oalgebras, , that makesthe diagram D fˆ // G @ @ @ @ @@ ε f @ (cid:15)(cid:15) C ommute. This universal property of ofree oalgebras implies that they are unique up to isomorphism if they exist. The paper [22℄ gives a onstru tive proof of their exist- en e in great generality (under the unne essary assumption that hain- omplexes R LVC are -free). In parti ular, this paper de(cid:28)nes ofree oalgebras and pointed PVC C irredu ible ofree oalgebras ogeneratedby a hain- omplex . R WeRwill denote the loseCdhsy(Rm)metri monoidal ategory of - hain- omplexes with -tensor produ ts by . These hain- omplexes are allowed to extend R into arbitrarily many negative dimensions and have underlying graded -modules that are • R arbitrary if is a (cid:28)eld (but they will be free) • R=Z nearly free, in the sense of de(cid:28)nition 2.1, if . 3. The general ase G We re allthe on eptof a model stru ture on a ategory . Thisinvolvesde(cid:28)n- ing spe ialized lasses of morphisms alled o(cid:28)brations, (cid:28)brations, and weak equi- valen es (see [19℄ and [11℄). The ategory and these lasses of morphisms must satisfy the onditions: G CM 1: is losed under all (cid:28)nite limits and olimits G CM 2: Suppose the following diagram ommutes in : X@ g //??Y @ ~ @ ~ @ ~ @ ~ @ ~ h @ ~~ f Z f,g,h If any two of are weak equivalen es, so is the third. f g g CM 3: If isaretra tof and isaweakequivalen e,(cid:28)bration,or o(cid:28)bra- f tion, then so is . 9 HOMOTOPY THEORY OF COALGEBRAS JUSTIN R. SMITH CM 4: Suppose that we are given a ommutative solid arrowdiagram U >>//A i f (cid:15)(cid:15) (cid:15)(cid:15) W //B i p where is a o(cid:28)bration and is a (cid:28)bration. Then the dotted arrow exists i p making the diagram ommute if either or is a weak equivalen e. f:X →Y G CM 5: Any morphism in may be fa tored: f =p◦i p i (1) , where is a (cid:28)bration and is a trivial o(cid:28)bration f =q◦j q j (2) , where is a trivial (cid:28)bration and is a o(cid:28)bration We also assume that these fa torizations are fun torial (cid:22) see [9℄. X •→X De(cid:28)nition 3.1. An obje t, , forwhi hthe map isa o(cid:28)bration,is alled Y Y →• o(cid:28)brant. An obje t, , for whi h the map is a (cid:28)bration, is alled (cid:28)brant. Ch(R) Example 3.2. The ategory, , of unbounded hain omplexes overthe ring R has a model stru ture in whi h: (1) Weak equivalen es are hain-homotopy equivalen es (2) Fibrations are surje tions of hain- omplexes that are split (as maps of R graded -modules). (3) Co(cid:28)brations are inje tions of hain- omplexes that are split (as maps of R graded -modules). Remark. All hain omplexes are (cid:28)brant and o(cid:28)brant in this model. Thisistheabsolutemodelstru turede(cid:28)nedbyChristensenandHoveyin[8℄,and Cole in [6℄. In this model stru ture, all unbounded hain- omplexes are o(cid:28)brant and a quasi-isomorphismmay fail to be a weak equivalen e. R R = Z Remark 3.3. We must allow non- -free hain omplexes (when ) be ause PV(∗) LV(∗) the underlying hain omplexes of the ofree oalgebras and are not R R R=Z knowntobe -free. They ertainlyareif isa(cid:28)eld,butif theirunderlying Zℵ0 Z abelian groups are subgroups of the Baer-Spe ker group, , whi h is -torsion free but well-known not to be a free abelian group (see [23℄, [3℄ or the survey [7℄). Proposition3.4. The forgetfulfun tor(de(cid:28)nedinde(cid:28)nition2.20)and ofree oal- gebra fun tors de(cid:28)ne adjoint pairs PV(∗):Ch(R) ⇆ I0:⌈∗⌉ LV(∗):Ch(R) ⇆ S0:⌈∗⌉ Remark. The adjointness of the fun tors follows from the universal property of ofree oalgebras(cid:22) see [22℄. V Condition 3.5. Throughout the rest of this paper, we assume that is an operad equipped with a morphism of operads δ:V→V⊗CoEnd(I;{R·p ,R·p }) 0 1 (see de(cid:28)nition 2.14) that makes the diagram VRRRRRRδRRRRRR//RVRRRR⊗RRRRRCRRoRRERRRRnRRdRRR(RIRR;{(cid:15)(cid:15)R·p0,R·p1}) V 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.