ebook img

Hodge Cycles on Abelian Varieties PDF

65 Pages·2011·0.54 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hodge Cycles on Abelian Varieties

Hodge cycles on abelian varieties P.Deligne(notesbyJ.S.Milne) July4,2003;June1,2011;October1,2018. Abstract ThisisaTeXedcopyofthearticlepublishedin Deligne,P.;Milne,J.S.;Ogus,A.;Shih,Kuang-yen.Hodgecycles,motives, andShimuravarieties. LNM900,Springer,1982,pp.9–100, somewhat revised and updated. See the endnotes for more details. The original M.1 articleconsistedofthenotes(writtenbyjsm)oftheseminar“Pe´riodesdesInte´grals Abe´liennes” given by P. Deligne at I.H.E.S., 1978-79. This file is available at www. jmilne.org/math/Documents. Contents Introduction. . . . . . . . . . . . . . . . . . . . . . . . 2 1 Reviewofcohomology . . . . . . . . . . . . . . . . . . . . 5 Topologicalmanifolds . . . . . . . . . . . . . . . . . . . . 5 Differentiablemanifolds . . . . . . . . . . . . . . . . . . . 5 Complexmanifolds . . . . . . . . . . . . . . . . . . . . . 7 Completesmoothvarieties . . . . . . . . . . . . . . . . . . 7 Applicationstoperiods. . . . . . . . . . . . . . . . . . . . 11 2 AbsoluteHodgecycles;principleB . . . . . . . . . . . . . . . 15 Definitions(k algebraicallyclosedoffinitetranscendencedegree) . . . . 15 BasicpropertiesofabsoluteHodgecycles . . . . . . . . . . . . . 16 Definitions(arbitraryk) . . . . . . . . . . . . . . . . . . . 19 Statementofthemaintheorem . . . . . . . . . . . . . . . . . 19 PrincipleB . . . . . . . . . . . . . . . . . . . . . . . . 19 3 Mumford-Tategroups;principleA . . . . . . . . . . . . . . . 22 Characterizingsubgroupsbytheirfixedtensors . . . . . . . . . . . 22 Hodgestructures . . . . . . . . . . . . . . . . . . . . . . 23 Mumford-Tategroups . . . . . . . . . . . . . . . . . . . . 24 PrincipleA . . . . . . . . . . . . . . . . . . . . . . . . 26 4 ConstructionofsomeabsoluteHodgecycles . . . . . . . . . . . 28 Hermitianforms . . . . . . . . . . . . . . . . . . . . . . 28 ConditionsforVd H1.A;Q/toconsistofabsoluteHodgecycles . . . . 30 E 5 CompletionoftheproofforabelianvarietiesofCM-type . . . . . . 36 AbelianvarietiesofCM-type. . . . . . . . . . . . . . . . . . 36 ProofofthemaintheoremforabelianvarietiesofCM-type. . . . . . . 37 1 CONTENTS 2 6 Completionoftheproof;consequences . . . . . . . . . . . . . 41 CompletionoftheproofofTheorem2.11 . . . . . . . . . . . . . 41 ConsequencesofTheorem2.11. . . . . . . . . . . . . . . . . 42 7 Algebraicityofvaluesofthe(cid:0)-function . . . . . . . . . . . . . 44 TheFermathypersurface . . . . . . . . . . . . . . . . . . . 45 Calculationofthecohomology . . . . . . . . . . . . . . . . . 46 TheactionofGal.Q=k/onthee´talecohomology . . . . . . . . . . 49 Calculationoftheperiods . . . . . . . . . . . . . . . . . . . 51 Thetheorem. . . . . . . . . . . . . . . . . . . . . . . . 53 Restatementofthetheorem . . . . . . . . . . . . . . . . . . 55 References. . . . . . . . . . . . . . . . . . . . . . . . . . . 57 M Endnotes(byJ.S.Milne) . . . . . . . . . . . . . . . . . . . 60 Introduction LetX beasmoothprojectivevarietyoverC. Hodgeconjecturedthatcertaincohomology classesonX arealgebraic. Themainresultprovedinthesenotesshowsthat,whenX isan abelianvariety,theclassesconsideredbyHodgehavemanyofthepropertiesofalgebraic classes. Inmoredetail,letXanbethecomplexanalyticmanifoldassociatedwithX,andconsider thesingularcohomologygroupsHn.Xan;Q/. ThevarietyXan beingofKa¨hlertype(every projective embedding defines a Ka¨hler structure), its cohomology groups Hn.Xan;C/' Hn.Xan;Q/˝Chavecanonicaldecompositions Hn.Xan;C/D M Hp;q; Hp;q Ddef Hq.Xan;˝p /. Xan pCqDn Thecohomologyclasscl.Z/2H2p.Xan;C/ofanalgebraicsubvarietyZ ofcodimensionp inX isrational(i.e.,itliesinH2p.Xan;Q//andisofbidegree.p;p/(i.e.,itliesinHp;p). TheHodgeconjecturestatesthat,conversely,everyelementof H2p.Xan;Q/\Hp;p isaQ-linearcombinationoftheclassesofalgebraicsubvarieties. Sincetheconjectureis unproven,itisconvenienttocalltheserational.p;p/-classesHodgecyclesonX. NowconsiderasmoothprojectivevarietyX overafieldk thatisofcharacteristiczero, algebraically closed, and small enough to be embeddable in C. The algebraic de Rham cohomologygroupsHn .X=k/havethepropertythat,foranyembedding(cid:27)Wk,!C,there dR arecanonicalisomorphisms Hn .X=k/˝ C'Hn .Xan;C/'Hn.Xan;C/: dR k;(cid:27) dR Itisnaturaltosaythatt 2H2p.X=k/isaHodgecycleonX relativeto(cid:27) ifitsimagein dR H2p.Xan;C/is.2(cid:25)i/p timesaHodgecycleonX˝ C. Theargumentsinthesenotes k;(cid:27) 2p showthat,ifX isanabelianvariety,thenanelementofH .X=k/thatisaHodgecycleon dR X relativetooneembeddingofk intoCisaHodgecyclerelativetoallembeddings;further, foranyembedding,.2(cid:25)i/p timesaHodgecycleinH2p.Xan;C/alwaysliesintheimage CONTENTS 3 ofH2p.X=k/.1 ThusthenotionofaHodgecycleonanabelianvarietyisintrinsictothe dR variety: itisapurelyalgebraicnotion. Inthecasethatk DCthetheoremshowsthatthe imageofaHodgecycleunderanautomorphismofCisagainaHodgecycle;equivalently, the notion of a Hodge cycle on an abelian variety over C does not depend on the map X !SpecC. Ofcourse,allthiswouldbeobviousifonlyoneknewtheHodgeconjecture. Infact,astrongerresultisprovedinwhichaHodgecycleisdefinedtobeanelementof Hn .X/(cid:2)Q Hn.X ;Q /. Asthetitleoftheoriginalseminarsuggests,thestrongerresult dR l et l hasconsequencesforthealgebraicityoftheperiodsofabelianintegrals: briefly,itallows onetoproveallarithmeticpropertiesofabelianperiodsthatwouldfollowfromknowingthe Hodgeconjectureforabelianvarieties. M.2 —————————————————- Inmoredetail,themaintheoremprovedinthesenotesisthateveryHodgecycleonan abelianvariety(incharacteristiczero)isanabsoluteHodgecycle—see(cid:144)2forthedefinitions andTheorem2.11foraprecisestatementoftheresult. Theproofisbasedonthefollowingtwoprinciples. A. Lett ;:::;t beabsoluteHodgecyclesonasmoothprojectivevarietyX andletG be 1 N thelargestalgebraicsubgroupofGL.H(cid:3).X;Q//(cid:2)GL.Q.1//fixingthet ;thenevery i cohomologyclasst onX fixedbyG isanabsoluteHodgecycle(see3.8). B. If.Xs/s2S isanalgebraicfamilyofsmoothprojectivevarietieswithS connectedand smoothand.ts/s2S isafamilyofrationalcycles(i.e.,aglobalsectionof...) such thatt isanabsoluteHodgecycleforones,thent isanabsoluteHodgecycleforall s s s (see2.12,2.15). EveryabelianvarietyAwithaHodgecyclet iscontainedinasmoothalgebraicfamily inwhicht remainsHodgeandwhichcontainsanabelianvarietyofCM-type. Therefore, Principle B shows that it suffices to prove the main theorem for A an abelian variety of CM-type (see (cid:144)6). Fix a CM-field E, which we can assume to be Galois over Q, and let ˙ be a set of representatives for the E-isogeny classes over C of abelian varieties with complexmultiplicationbyE. PrincipleBisusedtoconstructsomeabsoluteHodgeclasses on L A — the principle allows us to replace ˚A by an abelian variety of the form A2˙ A0˝ZOE (see(cid:144)4). LetG (cid:26)GL.˚A2˙H1.A;Q//(cid:2)GL.Q.1//bethesubgroupfixingthe absoluteHodgecyclesjustconstructedplussomeother(obvious)absoluteHodgecycles. ItisshownthatG fixeseveryHodgecycleonA,andPrincipleAthereforecompletesthe proof(see(cid:144)5). OnanalyzingwhichpropertiesofabsoluteHodgecyclesareusedintheaboveproof, one arrives at a slightlystronger result.2 Call arational cohomology classc on asmooth projective complex variety X accessible if it belongs to the smallest family of rational cohomologyclassessuchthat: (a) thecohomologyclassofeveryalgebraiccycleisaccessible; (b) thepull-backbyamapofvarietiesofanaccessibleclassisaccessible; (c) ift ;:::;t 2H(cid:3).X;Q/areaccessible,andifarationalclasst insomeH2p.X;Q/ 1 N isfixedbyanalgebraicsubgroupG ofAut.H(cid:3).X;Q//(automorphismsofH(cid:3).X;Q/ asagradedalgebra)fixingthet ,thent isaccessible; i 1Added(jsm).Thisdoesn’tfollowdirectlyfromTheorem2.11(see2.4).However,oneobtainsavariantof Theorem2.11usingtheabovedefinitionssimplybydroppingthee´talecomponenteverywhereintheproof(see, forexample,2.10b). 2Added(jsm).Seealso(cid:144)9ofMilne,Shimuravarietiesandmoduli,2013. CONTENTS 4 (d) PrincipleB holdswith“absoluteHodge”replacedby“accessible”. Sections4,5,6ofthesenotescanbeinterpretedasprovingthat,whenX isanabelianvariety, everyHodgecycleisaccessible. Sections2,3definethenotionofanabsoluteHodgecycle andshowthatthefamilyofabsoluteHodgecyclessatisfies(a),(b),(c),and(d);therefore, anaccessibleclassisabsolutelyHodge. Wehavetheimplications: M.3 abelianvarieties trivial HodgeHHHHHHHH)accessibleHHHH)absolutelyHodgeHHHH)Hodge. Onlythefirstimplicationisrestrictedtoabelianvarieties. The remaining three sections, (cid:144)1 and (cid:144)7, serve respectively to review the different cohomologytheoriesandtogivesomeapplicationsofthemainresultstothealgebraicityof productsofspecialvaluesofthe(cid:0)-function. NOTATION We define C to be the algebraic closure of Rpand i 2C to be a square root of (cid:0)1; thus i isonlydefineduptosign. Achoiceofi D (cid:0)1determinesanorientationofCasareal manifold—wetakethatforwhich1^i >0—andhenceanorientationofeverycomplex manifold. ComplexconjugationonCisdenotedby(cid:19)orbyz7!z. Recallthatthecategoryofabelianvarietiesuptoisogenyisobtainedfromthecategory of abelian varieties by taking the same class of objects but replacing Hom.A;B/ with Hom.A;B/˝Q. Weshallalwaysregardanabelianvarietyasanobjectinthecategoryof abelianvarietiesuptoisogeny: thusHom.A;B/isavectorspaceoverQ. If.V /isafamilyofrepresentationsofanalgebraicgroupG overafieldkandt 2V , ˛ ˛;ˇ ˛ thenthesubgroupofG fixingthet isthealgebraicsubgroupH ofG suchthat,forall ˛;ˇ k-algebrasR, H.R/Dfg2G.R/jg.t ˝1/Dt ˝1,all˛;ˇg. ˛;ˇ ˛;ˇ _ Lineardualsaredenotedby . IfX isavarietyoverafieldk and(cid:27) isahomomorphism (cid:27)Wk,!k0,then(cid:27)X denotesthevarietyX˝ k0 (DX(cid:2) Spec.k0/). k;(cid:27) Spec.k/ Bya(cid:29)b wemeanthataissufficientlygreaterthanb. 1 REVIEWOFCOHOMOLOGY 5 1 Review of cohomology Topological manifolds LetX beatopologicalmanifoldandF asheafofabeliangroupsonX. Weset Hn.X;F/DHn.(cid:0).X;F(cid:15)// where F !F(cid:15) is any acyclic resolution of F. This defines Hn.X;F/ uniquely up to a uniqueisomorphism. WhenF istheconstantsheafdefinedbyafieldK,thesegroupscanbeidentifiedwith singularcohomologygroupsasfollows. LetS(cid:15).X;K/bethecomplexinwhichSn.X;K/is theK-vectorspacewithbasisthesingularn-simplicesinX andtheboundarymapsendsa simplextothe(usual)alternatingsumofitsfaces. Set S(cid:15).X;K/DHom.S(cid:15).X;K/;K/ withtheboundarymapforwhich .˛;(cid:27)/7!˛.(cid:27)/WS(cid:15).X;K/˝S(cid:15).X;K/!K isamorphismofcomplexes,namely,thatdefinedby .d˛/.(cid:27)/D.(cid:0)1/deg.˛/C1˛.d(cid:27)/: PROPOSITION 1.1. ThereisacanonicalisomorphismHn.S(cid:15).X;K//!Hn.X;K/. PROOF. IfU istheunitball,thenH0.S(cid:15).U;K//DK andHn.S(cid:15).U;K//D0forn>0. Thus,K !S(cid:15).U;K/isaresolutionofthegroupK. LetSn bethesheafofX associated with the presheaf V 7!Sn.V;K/. The last remark shows that K !S(cid:15) is a resolution of thesheafK. AseachSn isfine(Warner1971,5.32),Hn.X;K/'Hn.(cid:0).X;S(cid:15)//. Butthe obviousmapS(cid:15).X;K/!(cid:0).X;S(cid:15)/issurjectivewithanexactcomplexaskernel(loc. cit.), andso Hn.S(cid:15).X;K//!' Hn.(cid:0).X;S(cid:15)//'Hn.X;K/. (cid:4) Differentiable manifolds NowassumeX isadifferentiablemanifold. Onreplacing“singularn-simplex”by“differen- 1 tiablesingularn-simplex”intheabovedefinitions,oneobtainscomplexesS .X;K/and (cid:15) (cid:15) S .X;K/. Thesameargumentshowsthatthereisacanonicalisomorphism 1 Hn.X;K/Ddef Hn.S1.X;K//!' Hn.X;K/ 1 (cid:15) (Warner1971,5.32). LetOX1 bethesheafofC1real-valuedfunctionsonX,let˝Xn1 betheOX1-module 1 (cid:15) ofC differentialn-formsonX,andlet˝ bethecomplex X1 OX1 !d ˝X11 !d ˝X21 !d (cid:1)(cid:1)(cid:1): 1 REVIEWOFCOHOMOLOGY 6 ThedeRhamcohomologygroupsofX aredefinedtobe fclosedn-formsg Hn .X/DHn.(cid:0).X;˝(cid:15) //D : dR X1 fexactn-formsg IfU istheunitball,Poincare´’slemmashowsthatH0 .U/DRandHn .U/D0forn>0. dR dR Thus,R!˝(cid:15) isaresolutionoftheconstantsheafR,andasthesheaves˝n arefine X1 X1 (Warner1971,5.28),wehaveHn.X;R/'Hn .X/. dR For! 2(cid:0).X;˝n /and(cid:27) 2S1.X;R/,define X1 n Z h!;(cid:27)iD.(cid:0)1/n.n2C1/ ! 2R. (cid:27) Stokes’stheoremstatesthatR d! DR !,andso (cid:27) d(cid:27) hd!;(cid:27)iC.(cid:0)1/nh!;d(cid:27)iD0. Thepairingh;ithereforedefinesamapofcomplexes fW(cid:0).X;˝(cid:15) /!S(cid:15) .X;R/. X1 1 THEOREM 1.2 (DE RHAM). The map HdnR.X/!H1n.X;R/ defined by f is an isomor- phismforalln. PROOF. Themapisinversetothemap ' Hn.X;R/!Hn.X;R/'Hn .X/ 1 dR definedintheprevioustwoparagraphs(Warner1971,5.36). (Oursignsdifferfromtheusual signsbecausethestandardsignconventions Z Z Z Z Z d! D !; pr(cid:3)!^pr(cid:3)(cid:17)D !(cid:1) (cid:17); etc. 1 2 (cid:27) d(cid:27) X(cid:2)Y X Y violatethesignconventionsforcomplexes.) (cid:4) A number R !, (cid:27) 2H .X;Q/, is called a period of !. The map in (1.2) identifies (cid:27) n Hn.X;Q/withthespaceofclassesofclosedformswhoseperiodsareallrational. Theorem 1.2canberestatedasfollows: acloseddifferentialformisexactifallitsperiodsarezero; thereexistsacloseddifferentialformhavingarbitrarilyassignedperiodsonanindependent setofcycles. REMARK 1.3 (SINGER AND THORPE 1967, 6.2). If X is compact, then it has a smooth (cid:15) triangulationT. DefineS(cid:15).X;T;K/andS .X;T;K/asbefore,butusingonlysimplicesin T. Thenthemap (cid:0).X;˝(cid:15) /!S(cid:15).X;T;K/ X1 definedbythesameformulasasf aboveinducesisomorphisms Hn .X/!Hn.S(cid:15).X;T;K//. dR 1 REVIEWOFCOHOMOLOGY 7 Complex manifolds (cid:15) NowletX beacomplexmanifold,andlet˝ denotethecomplex Xan O !d ˝1 !d ˝2 !d (cid:1)(cid:1)(cid:1) Xan Xan Xan inwhich˝n isthesheafofholomorphicdifferentialn-forms. Thus,locallyasectionof Xan ˝n isoftheform Xan X ! D ˛ dz ^:::^dz i1:::in i1 in with ˛ a holomorphic function and the z complex local coordinates. The complex i1:::in i formofPoincare´’slemmashowsthatC!˝(cid:15) isaresolutionoftheconstantsheafC,and Xan sothereisacanonicalisomorphism Hn.X;C/!Hn.X;˝(cid:15) / (hypercohomology). Xan IfX isacompactKa¨hlermanifold,thenthespectralsequence Ep;q DHq.X;˝p / H) HpCq.X;˝(cid:15) / 1 Xan Xan degenerates,andsoprovidesacanonicalsplitting M.4 Hn.X;C/D M Hq.X;˝p / (theHodgedecomposition) Xan pCqDn as Hp;q Ddef Hq.X;˝p / is the complex conjugate of Hq;p relative to the real structure Xan Hn.X;R/˝C'Hn.X;C/ (Weil 1958). The decomposition has the following explicit description: the complex ˝(cid:15) ˝C of sheaves of complex-valued differential forms on X1 the underlying differentiable manifold is an acyclic resolution of C, and so Hn.X;C/D Hn.(cid:0).X;˝(cid:15) ˝C//; Hodge theory shows that each element of the second group is X1 representedbyauniqueharmonicn-form,andthedecompositioncorrespondstothedecom- positionofharmonicn-formsintosumsofharmonic.p;q/-forms,pCqDn. 3 Complete smooth varieties Finally,letX beacompletesmoothvarietyoverafieldk ofcharacteristiczero. IfkDC, thenX definesacompactcomplexmanifoldXan,andtherearethereforegroupsHn.Xan;Q/, dependingonthemapX !Spec.C/,thatweshallwriteHn.X/(hereB abbreviatesBetti). B IfX isprojective,thenthechoiceofaprojectiveembeddingdeterminesaKa¨hlerstructure on Xan, and hence a Hodge decomposition (which is independent of the choice of the embeddingbecauseitisdeterminedbytheHodgefiltration,andtheHodgefiltrationdepends onlyonX;seeTheorem1.4below). Inthegeneralcase,werefertoDeligne1968,5.3,5.5, fortheexistenceofthedecomposition. For an arbitrary field k and an embedding (cid:27)Wk ,!C, we write Hn.X/ for Hn.(cid:27)X/ (cid:27) B andHp;q.X/forHp;q.(cid:27)X/. As(cid:19)definesahomeomorphism(cid:27)Xan!(cid:19)(cid:27)Xan,itinducesan (cid:27) isomorphismHn.X/!Hn.X/. Sometimes,whenk isgivenasasubfieldofC,wewrite (cid:19)(cid:27) (cid:27) Hn.X/forHn.XC/. B B 3ForarecentaccountofHodgetheory,seeC.Voisin,HodgeTheoryandComplexAlgebraicGeometry,I, CUP,2002. 1 REVIEWOFCOHOMOLOGY 8 Let ˝(cid:15) denote the complex in which ˝n is the sheaf of algebraic differen- X=k X=k tial n-forms, and define the (algebraic) de Rham cohomology group Hn .X=k/ to be dR Hn.X ;˝(cid:15) / (hypercohomology with respect to the Zariski cohomology). For any Zar X=k homomorphism(cid:27)Wk,!k0,thereisacanonicalisomorphism Hn .X=k/˝ k0!Hn .X˝ k0=k0/: dR k;(cid:27) dR k Thespectralsequence Ep;q DHq.X ;˝p / H) HpCq.X ;˝(cid:15) / 1 Zar X=k Zar X=k definesafiltration(theHodgefiltration)FpHn .X/onHn .X/whichisstableunderbase dR dR change. THEOREM 1.4. WhenkDCtheobviousmaps Xan!X ; ˝(cid:15) ˝(cid:15); Zar Xan X induceisomorphisms Hn .X/!Hn .Xan/'Hn.Xan;C/ dR dR underwhichFpHn .X/correspondstoFpHn.Xan;C/Ddef M Hp0;q0. dR p0(cid:21)p,p0Cq0Dn PROOF. Theinitialtermsofthespectralsequences Ep;q DHq.X ;˝p / H) HpCq.X ;˝(cid:15) / 1 Zar X=k Zar X=k Ep;q DHq.X;˝p / H) HpCq.X;˝(cid:15) / 1 Xan Xan areisomorphic—seeSerre1956fortheprojectivecaseandGrothendieck1966forthegen- eralcase. Thetheoremfollowsfromthisbecause,bydefinitionoftheHodgedecomposition, thefiltrationofHn .Xan/definedbytheabovespectralsequenceisequaltothefiltrationof dR Hn.Xan;C/definedinthestatementofthetheorem. (cid:4) It follows from the theorem and the discussion preceding it that every embedding (cid:27)Wk,!Cdefinesanisomorphism ' HdnR.X/˝k;(cid:27)C(cid:0)!H(cid:27)n.X/˝QC and, in particular, a k-structure on H(cid:27)n.X/˝QC. When k DQ, this structure should be distinguishedfromtheQ-structuredefinedbyHn.X/: thetwoarerelatedbytheperiods. (cid:27) When k is algebraically closed, we write Hn.X;Af/, or Hent.X/, for Hn.Xet;ZO/˝Z Q, where Hn.X ;ZO/ D lim Hn.X ;Z=mZ/ (e´tale cohomology). If X is connected, et (cid:0) et m H0.X;A /DA , the ring of finite ade`les for Q, which justifies the first notation. By f f definition, Hn.X/ depends only on X (and not on its structure morphism X !Speck). et ThemapHn.X/!Hn.X˝ k0/definedbyaninclusionk,!k0 ofalgebraicallyclosed et et k fieldsisanisomorphism(specialcaseoftheproperbasechangetheoremArtinetal.1973, XII). The comparison theorem (ibid. XI) shows that, when k DC, there is a canonical isomorphismHn.X/˝A !Hn.X/. ItfollowsthatHn.X/˝A isindependentofthe B f et B f morphismX !SpecC,andthat,overanyalgebraicallyclosedfieldofcharacteristiczero, Hn.X/isafreeA -module. et f 1 REVIEWOFCOHOMOLOGY 9 TheA -moduleHn.X;A /canalsobedescribedastherestrictedproductofthespaces f f Hn.X;Q /,l aprimenumber,withrespecttothesubspacesHn.X;Z /=ftorsiong. l l Nextwedefinethenotionofthe“Tatetwist”ineachofthethreecohomologytheories. For this we shall define objects Q.1/ and set Hn.X/.m/DHn.X/˝Q.1/˝m. We want Q.1/tobeH2.P1/(realizationoftheTatemotiveinthecohomologytheory),buttoavoid thepossibilityofintroducingsignambiguitiesweshalldefineitdirectly, Q .1/D2(cid:25)iQ B Qet.1/DAf.1/Ddef .l im(cid:0)(cid:22)r/˝ZQ; (cid:22)r Df(cid:16) 2kj(cid:16)r D1g r Q .1/Dk; dR andso Hn.X/.m/DHn.X/˝Q.2(cid:25)i/mQDHn.Xan;.2(cid:25)i/mQ/ .kDC/ B B (cid:16) (cid:17) Hent.X/.m/DHent.X/˝Af .Af.1//˝mD l im(cid:0)rHn.Xet;(cid:22)˝r m/ ˝ZQ .k alg.closed) Hn .X/.m/DHn .X/. dR dR Thesedefinitionsextendinanobviouswaytonegativem. Forexample,wesetQ .(cid:0)1/D et HomAf.Af.1/;Af/anddefine Hn.X/.(cid:0)m/DHn.X/˝Q .(cid:0)1/˝m: et et et Therearecanonicalisomorphisms QB.1/˝QAf !Qet.1/ (k(cid:26)C,k algebraicallyclosed/ Q .1/˝C!Q .1/˝ C (k(cid:26)C) B dR k andhencecanonicalisomorphisms(thecomparisonisomorphisms) HBn.X/.m/˝QAf !Hent.X/.m/ (k(cid:26)C,k algebraicallyclosed/ HBn.X/.m/˝QC!HdnR.X/.m/˝kC (k(cid:26)C). Todefinethefirst,notethatexpdefinesanisomorphism z7!ezW2(cid:25)iZ=r2(cid:25)iZ!(cid:22) : r After passing to the inverse limit over r and tensoring with Q, we obtain the required isomorphism2(cid:25)iA !A .1/. Thesecondisomorphismisinducedbytheinclusions f f 2(cid:25)iQ,!C -k: AlthoughtheTatetwistfordeRhamcohomologyistrivial, itshouldnotbeignored. For example,whenkDC, Hn.X/˝C 17!.2(cid:25)i/m Hn.X/.m/˝C B ' B ' ' Hn .X/ Hn .X/.m/ dR dR 1 REVIEWOFCOHOMOLOGY 10 fails to commute by a factor .2(cid:25)i/m. Moreover when m is odd the top isomorphism is definedonlyuptosign. In each cohomology theory there is a canonical way of attaching a class cl.Z/ in H2p.X/.p/toanalgebraiccycleZ onX ofpurecodimensionp. Sinceourcohomology groupsarewithouttorsion,wecandothisusingChernclasses(Grothendieck1958). Starting withafunctorialisomorphismc WPic.X/!H2.X/.1/,oneusesthesplittingprincipleto 1 definetheChernpolynomial c .E/DPc .E/tp; c .E/2H2p.X/.p/; t p p ofavectorbundleE onX. ThemapE 7!c .E/isadditive,andthereforefactorsthrough t theGrothendieckgroupofthecategoryofvectorbundlesonX. But,asX issmooth,this groupisthesameastheGrothendieckgroupofthecategoryofcoherentO -modules,and X wecanthereforedefine 1 cl.Z/D c .O / .p(cid:0)1/Š p Z (loc. cit. 4.3). Indefiningc fortheBettiande´taletheories,webeginwithmaps 1 Pic.X/!H2.Xan;2(cid:25)iZ/ Pic.X/!H2.X ;(cid:22) / et r arisingasconnectinghomomorphismsfromthesequences 0!2(cid:25)i !O (cid:0)e(cid:0)x!p O(cid:2) !0 Xan Xan 0!(cid:22) !O(cid:2) !(cid:0)r O(cid:2) !0: r X X ForthedeRhamtheory,wenotethatthedlogmap,f 7! df ,definesamapofcomplexes f 0 O(cid:2) 0 (cid:1)(cid:1)(cid:1) X dlog O d ˝1 d ˝2 d (cid:1)(cid:1)(cid:1) X X X andhenceamap Pic.X/'H1.X;O(cid:2)/'H2.X;0!O(cid:2) !(cid:1)(cid:1)(cid:1)/ X X !H2.X;˝(cid:15)/DH2 .X/DH2 .X/.1/ X dR dR whose negative is c . It can be checked that the three maps c are compatible with the 1 1 comparisonisomorphisms(Deligne1971a,2.2.5.1),anditfollowsformallythatthemapscl arealsocompatibleonceonehascheckedthattheGysinmapsandmultiplicativestructures arecompatiblewiththecomparisonisomorphisms. When k D C, there is a direct way of defining a class cl.Z/ 2 H2d(cid:0)2pp.X.C/;Q/ (singular cohomology, d D dim.X/, p D codim.Z//: the choice of an i D (cid:0)1 deter- mines an orientation of X and of the smooth part of Z, and there is therefore a topo- logically defined class cl.Z/ 2 H2d(cid:0)2p.X.C/;Q/. This class has the property that for Œ!(cid:141)2H2d(cid:0)2p.X1;R/DH2d(cid:0)2p.(cid:0).X;˝(cid:15) //representedbytheclosedform!, X1 Z hcl.Z/;Œ!(cid:141)iD !. Z

Description:
Hodge cycles on abelian varieties. P. Deligne (notes by J.S. Milne). July 4, 2003; deleted “Motives for Hodge Cycles” June 1, 2011. Abstract. This is a
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.