ebook img

High resolution AMI Large Array imaging of spinning dust sources: spatially correlated 8 micron emission and evidence of a stellar wind in L675 PDF

0.45 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview High resolution AMI Large Array imaging of spinning dust sources: spatially correlated 8 micron emission and evidence of a stellar wind in L675

Mon.Not.R.Astron.Soc.000,1–5(2009) Printed8January2010 (MNLATEXstylefilev2.2) High resolution AMI Large Array imaging of spinning dust sources: m spatially correlated 8 m emission and evidence of a stellar wind in L675⋆ 0 1 0 AMI Consortium: Anna M. M. Scaife1,2†, David A. Green1, Guy G. Pooley1, 2 Matthew L. Davies1, Thomas M. O. Franzen1, Keith J. B. Grainge1,3, n a Michael P. Hobson1, Natasha Hurley-Walker1, Anthony N. Lasenby1,3, J 8 Malak Olamaie1, John S. Richer1,3, Carmen Rodr´ıguez-Gonza´lvez1, ] Richard D. E. Saunders1,3, Paul F. Scott1, Timothy W. Shimwell1, A G David J. Titterington1, Elizabeth M. Waldram1 & Jonathan T. L. Zwart4 . 1AstrophysicsGroup,CavendishLaboratory,JJThomsonAvenue,CambridgeCB30HE h 2DublinInstituteforAdvancedStudies,31FitzwilliamPlace,Dublin2,Ireland p 3KavliInstituteforCosmologyCambridge,MadingleyRoad,Cambridge,CB30HA - 4ColumbiaAstrophysicsLaboratory,ColumbiaUniversity,550West120thStreet,NewYork10027,USA o r t s a Accepted—;received—;inoriginalform8January2010 [ 2 ABSTRACT v We present 25′′ resolution radio images of five Lynds Dark Nebulae (L675, L944, L1103, 1 1 L1111 and L1246) at 16GHz made with the Arcminute Microkelvin Imager (AMI) Large 0 Array.TheseobjectswerepreviouslyobservedwiththeAMISmallArraytohaveanexcess 4 ofemissionatmicrowavefrequenciesrelativetolowerfrequencyradiodata.InL675wefind . a flat spectrum compact radio counterpart to the 850m m emission seen with SCUBA and 0 suggestthatitiscm-waveemissionfromapreviouslyunknowndeeplyembeddedyoungpro- 1 9 tostar.InthecaseofL1246thecm-waveemissionisspatiallycorrelatedwith8m memission 0 seenwithSpitzer.SincetheMIRemissionispresentonlyinSpitzer band4wesuggestthat : itarisesfromapopulationofPAH molecules,whichalsogiverisetothecm-waveemission v throughspinningdustemission. i X Keywords: Radiationmechanisms:general–ISM:general–ISM:clouds–stars:formation r a 1 INTRODUCTION cificcaseofdarkcloudstherecentAMIsample(AMIConsortium: Scaifeetal.2009;hereinafterPaperI)offourteenLyndsDarkNeb- Thecomplete characterization of microwave emission fromspin- ulaefoundanexcessinonlyfive. ningdustgrainsisakeyquestioninbothastrophysicsandcosmol- It has been suggested that cm-wave emission from spinning ogy. It probes a region of the electromagnetic spectrum where a dust is emitted by a population of ultra-small grains (Draine & number ofdifferent astrophysical disciplinesoverlap. Itisimpor- Lazarian1998).Theseultra-smallgrainsarethoughttoexistmainly tant for CMB observations in order to correctly characterise the in the form of single polycyclic aromatic hydrocarbon (PAH) contaminatingforegroundemission;forstarandplanetaryforma- molecules.PAHmoleculesaregenerallydetectedthroughtheirnar- tionitisimportantbecauseitpotentiallyprobesaregimeofgrain rowlineemissionfeaturesintheMIR.Fortheseemissionfeatures sizesthatisnototherwiseeasilyobservable. to be observed the PAH molecules must be exposed to a strong Althoughanumberofobjectshavenowbeenfoundtoexhibit source of UV flux. Sincethisflux isgenerally absent in the case anomalous microwave emission, attributed to spinning dust, it is ofdarkclouds,themicrowaveemissionfromtherotationofPAH stillunclearwhatdifferentiatesthoseobjectsfromthemanyother moleculesmaybetheonlywaytostudytheverysmallgrainpop- seeminglysimilartargetsthatdonot showtheexcess.Inthespe- ulationintheseobjects. Itisalsoknownthatradiocontinuumemissionindarkclouds ⋆ Werequestthatanyreferencetothispapercites“AMIConsortium:Scaife mayarisefromionizedgasassociatedwithastellaroutflow.When etal.2010” aluminousstarispresentthisariseseitherastheresultofacom- † E-mail:[email protected] pactHIIregionoranionizedstellarwind.Inthecaseofveryyoung 2 Scaifeetal. lowluminositystarsradiocontinuumemissionmaybealsobede- Table1.AMILALynds DarkNebulae. Column [1]Nameofcloud, [2] tected.Inthisinstanceitisgenerallyattributedtothepresenceof RightAscension,[3]Declination, [4]AMILAsynthesizedbeamFWHM apartiallyionized(0.026xe60.35;Bacciotti&Eislo¨ffel1999) majoraxis,[5]AMILAsynthesizedbeamFWHNminoraxis,and[6]r.m.s. stellar wind (Wright & Barlow 1975; Panagia & Felli 1975), or noisefluctuationsonthecombinedchannelmap. possiblyaneutralwindwhichhasbeenshock-ionizedfurtherfrom thecentralsource byimpactingonadenseobstacle(Curiel etal. Name RA Dec D qmaj D qmin s rms 1989). (J2000) (J2000) (arcsec) (arcsec) (mJy) bm In this paper we present follow-up observations of the five L675 192352.6 110739 49.9 27.4 35 AMISmallArray(SA)spinningdustdetections(PaperI)athigher L944 211740.8 431808 36.5 31.2 31 resolutionwiththeAMILargeArray(LA)overthesamefrequency L1103 214210.2 564344 32.0 26.3 25 range.Allco-ordinatesinthispaperareJ2000.0. L1111 214027.1 574810 39.4 30.8 29 L1246 232530.1 633830 31.2 26.9 25 2 OBSERVATIONS AMI comprises two synthesis arrays, one of ten 3.7m antennas (SA) and one of eight 13m antennas (LA), both sited at Lord’s Bridge, Cambridge (AMI Consortium: Zwart et al. 2008). The telescope observes in the band 13.5–17.9GHz from which eight 0.75GHzbandwidthchannelsaresynthesized.Inpractice,thetwo lowestfrequencychannels(1&2)arenotgenerallyusedduetoa lowerresponseinthisfrequencyrangeandinterferencefromgeo- Figure2.L675SourceA:datapointsarefluxdensitiesfromAMILAchan- stationarysatellites. nels3–8.Thebest-fitspectralindexofa =0.10±0.36isshownasadashed Observations of five Lynds dark nebulae selected from the line. originalAMISAsampleweremadein2009February–Marchus- ingtheAMILA.Theco-ordinatesofthesefieldsarelistedinTa- 3 RESULTS ble1alongwiththesizeoftheAMILAsynthesizedbeamtowards eachobjectandther.m.s.noisemeasuredoutsidetheprimarybeam L675: The AMI LA observations of L675 show two obvious re- ontheCLEANedmaps.WenotethattheAMILAobservationof gionsof compact emission, seeFig.1. Thefirstof these, slightly L1246 is towards the north–east of this cloud where anomalous offset from the pointing centre, is coincident with both the peak emissionwasdetectedbytheAMISAanddoesnotcoverthesame of the AMI SA emission and also the compact emission seen at areaastheoriginalSCUBAobservation. 850m mbytheSCUBAinstrument(Visseretal.2001;2002).We Data reduction was performed using the local software tool denote this source “A” (19h23m50.s5, +11◦07′44′′). The second, REDUCE, see Paper I for more details. Flux calibration was per- justoutsidetheLAprimarybeamFWHMtothenorth-east,isco- formedusingshortobservationsof3C286nearthebeginningand incident withtheprobableextragalacticpoint sourceidentifiedas end of each run. We assumed I+Q flux densities for this source “B”(19h24m02.s4,+11◦10′54′′)intheoriginalAMISAobserva- intheAMILAchannelsconsistentwiththefrequencydependent tions(PaperI). model of Baarset al.(1977), ≃3.3Jy at16GHz. AsBaarset al. SourceAiscompletelyunresolvedbytheAMILAandshows measureIandAMILAmeasuresI+Q,thesefluxdensitiesinclude aflatspectrumacrosstheAMIband,a 17.9=0.10±0.36,consis- 14.3 correctionsforthepolarisationofthecalibratorsourcederivedby tentwithfree–freeemission,seeFig.2.Thisspectralindexdiffers interpolatingfromVLAmeasurements.Acorrectionisalsomade considerablyfromthatmeasuredbyAMISA.Thisisbecausethe for the changing intervening air mass over the observation. The LAisnotsensitivetothelargescaleemissionseenwiththeSA.In- phasewascalibratedusinginterleavedobservations ofcalibrators deeditseemslikelythattheemissionseenbythetwoarraysarises selectedfromtheJodrellBankVLASurvey(JVAS;Patnaiketal. fromcompletelydifferentsources. 1992).Aftercalibration,thephaseisgenerallystableto5◦forchan- L944: The original AMI SA observations of L944 revealed nels4–7,and10◦forchannels3and8.TheFWHMoftheprimary acompactregionofemissiontothenorthofthecloud,coincident beamoftheAMILAis≈6′at16GHz. withonesideoftheprotostellaroutflow.AMILAobservations,see Reduced data were imaged using the AIPS data package. Fig.1,revealthisemissionarisesnotfromapoint-likeobjectbut CLEANdeconvolutionwasperformedusingthetaskIMAGRwhich ratherfromadiffuseregionofemission,thepeakofwhichoccurs appliesadifferentialprimarybeamcorrectiontotheindividualfre- at21h17m42.s6,+43◦20′08′′.Weestimatethefluxspectrumbyin- quency channels to produce the combined frequency image. De- tegratingthefluxdensityfromtheprimarybeamcorrectedchannel convolved maps weremade fromboth thecombined channel set, mapswithinatwoarcminuteradiusoftheLApointingcentre.This seeFig.1,andforindividual channels. Thebroadspectralcover- showsasteeplyrisingspectrumwitha 17.9=−2.1±0.5.Thisis 14.3 ageofAMIallowsarepresentationofthespectrumbetween14.3 consistentwiththatfoundfromtheAMISAdata,howeverthiscor- and 17.9GHz to be made independently of other telescopes and respondenceisnotmeaningfulasthelowsignaltonoiseintheSA inwhat followsweusetheconvention: S(cid:181) n −a ,whereSisflux dataprecludesapreciseestimate.Thefluxdensityfoundtowards density, n isfrequency anda isthespectralindex. Allerrorsare thisregionintheLAmapisonlymarginallylowerthanthatfound quotedto1s . from the comparatively coarser resolution SA map. This implies AMILA spinningdustobservations 3 L675 L944 L1103 L1111 L1246 Figure1.AMILAcombinedchanneldataisshownasgreyscaleinunitsofmJy/beam,greyconrtoursat−6,−3,±2,±1s andblackcontoursat3,6,12,24s etc.SCUBA850m mdataisshownasredcontourswithlevelsasinVisseretal.(2001;2002)fortheallcloudsexceptL1246.TheAMILAobservationof L1246doesnotcovertheregionobservedbySCUBA.AMISAdataisshownasbluecontourswithlevelsasinPaperI.TheAMILAprimarybeamFWHM isshownasacircleandthesynthesizedbeamasafilledellipseinthebottomleftcorner. 4 Scaifeetal. Table2.IntegratedfluxdensitiesinmJyforAMILAobservationsofL675,L944andL1246.Errorsarecalculatedass =p(0.05S)2+s r2ms,wheres rmsis ther.m.s.noiseintheindividualchannelmap. Freq.(GHz) Name 14.3 15.0 15.7 16.4 17.2 17.9 a L675 2.74 ±0.34 2.24 ±0.12 2.26 ±0.12 2.12 ±0.11 2.42 ±0.14 2.22 ±0.12 +0.10±0.36 L944 - 2.03 ±0.11 2.40 ±0.13 2.89 ±0.15 2.86 ±0.15 - −2.11±0.49 L1246 - 0.62 ±0.18 0.55 ±0.03 0.62 ±0.03 0.58 ±0.04 - −0.40±0.82 thattheemissioncomesnotfromonesmoothextendedregionthat ispartiallyresolvedoutbytheLAbaselines,butfromacollection ofsmallerfragmentsorfilaments.Thesefragmentsareunresolved byeitherarray,althoughthegranularitybecomesmoreevidentin thehigherfrequencychannelsoftheLA.Theamountoffluxlost inchannels5to8relativetochannel4issignificantlysmallerthan wouldbeexpectedfromaGaussiansourceofsimilardimensions. L1103 and L1111: AMI LA observations of L1103 and L1111donotshowanydistinctregionsofcompactcm-waveemis- sion.Thediffusepatchesoflowlevelemissionpresentwithinthe primary beam towards both sources are indicative of larger scale structureswhichhavebeenresolvedoutbythesynthesizedbeam. Wecanprovideanestimateofthefluxdensityseentowardsthese objectswiththeLAbyfittingandremovingatiltedplanebaselevel attheprimarybeamFWHM.Fromthecombinedchanneldatathis givesS16=5.1±0.6mJyandS16=2.4±0.3mJyforL1103and L1111,respectively.Thesevaluesindicatethatthefluxlossiscon- Figure3.L675:AMILAcombinedchanneldataisshownaswhitecontours siderable: approximately 45% and 96%. The sensitivity of these at3,6,12s etc.SpitzerBand4dataisshownasgreyscaleinMJy/sr,and issaturatedatbothendstoemphasisethestructurepresent.AMISAdatais LA observations is much greater than those of the SA and it is shownasbluecontoursasinFig.1. possiblethatthepatchyemissioninthesefieldscorrespondstoen- hancementsintheextendedemissionwhicharebelowthedetection thresholdintheSAdata. L1246: AMI SA observations towards L1246 did not show anyexcessemissioncoincidentwiththeSCUBAidentificationof thedarkcloud,butdidrevealaregionofemission≈2′tothenorth– east of the cloud, in a region not covered by the SCUBA map, whichhadnocounterpartinthelowerfrequencyobservations.AMI LAobservationsofthisNEregionshowanarcofemission(peak: 23h25m20.s4,+63◦38′40′′),seeFig.1.Weassessthespectralbe- haviour of this object in two ways. Firstly, we estimate the flux densityofthearcitself.Wefitandremoveatiltedplanebaselevel withinanirregularpolygondrawnaroundtheobjectandintegrate the remaining flux. Secondly, we fit a tilted plane baselevel to a circleattheprimarybeamFWHMandintegrateallthefluxabove thisbaselevelwithinthatradius.Bothmethodsgiveconsistentre- sults, as might be expected since the primary beam is relatively empty otherwise. From the first method we find a spectral index a 1157..09=−0.40±0.87,andfromtheseconda 1157..09=−0.47±0.82. Figure4.L1246:AMILAcombinedchanneldataisshownaswhitecon- toursat1,2,4,8s etc.SpitzerBand4dataisshownasgreyscaleinMJy/sr, saturatedatbothendsofthescaletoemphasisethestructurepresent.The AMILAprimarybeamisshownasacircleandthesynthesizedbeamasa 4 DISCUSSIONANDCONCLUSIONS filledellipseinthebottomleftcorner. L675andL1246havearchivalSpitzerIRACdata,whichshowsin bothcasesasignificantamountofemissioninBand4(6.4–9.4m m) InBand4itispresentasanarc,coincidentwiththatseenat16GHz andverylittleintheotherthree(3.2–3.9,4.0–5.0and4.9–6.4m m, intheAMILAdata. respectively).InthecaseofL675thisemissionispresentonavery Spitzer Band 4 contains two of the PAH emission lines, in- largescale,seeFig.3.Theemissionseenat16GHzwiththeAMI cluding the strongest (7.7m m). Of the three other Spitzer bands SAappearsonasimilarscale,howeverthesmallfieldofviewofthe only Band 1 contains an emission line (3.3m m) and for ionized Spitzer data precludes amore detailed comparison. L1246 shows PAHsthislineisexpectedtobesignificantlyweaker.Itisprobable anarcofemissionat16GHzwhichisalsoevidentinSpitzerIRAC therefore that the MIR correlated cm-wave data seen in the AMI Band4,seeFig.4.ThisemissionisagainnotpresentinBands1–3. maps isaconsequence of spinning dust emission froma popula- AMILA spinningdustobservations 5 tionofionizedPAHmolecules.NeutralPAHmoleculesdonotin Towards L675 wehaveobserved flatspectrum compact cm- generalpossessapermanentdipolemomentandarethereforenot waveemissioncoincidentwiththeSCUBA850m memissionfrom expectedtohaverotationalemission(Tielens2008).Thisemission, the same region. These characteristics suggest that this source is themechanismofwhichisdescribedindetailbyDraine&Lazar- associatedwithastellarwindfromadeeplyembeddedyoungpro- ian(1998),arisesfromtheintrinsicdipolemomentsofsmalldust tostar. grains,mostlikelytobePAHmolecules,whichemitpowerwhen We detect extended cm-wave emission to the North of the theyrotate.Thisrotationhasavarietyofcontributingfactors,the L944SMM-1protostarwhichdisplaysspectralbehaviour consis- relativeimportanceofwhichvarieswithgrainenvironment.How- tentwitheitherspinningdust,oralternativelyacollectionofultra- ever,inthemajorityofcasesexcitationthroughcollisionwithions compactHIIregions. ispredominant. L1246showsanarcofcm-waveemissionwhichiscoincident InthecaseofL675A,wemustconsiderthepossibilitythatwe with emission seen in Spitzer Band 4. We suggest that this is an areobserving acoincidental extragalacticradiosource. Usingthe exampleofemissionfromapopulationofPAHmolecules,seenin extended9Csurvey15GHzsourcecounts(Waldrametal.2009), emissionlinesintheSpitzer data,andemissionasaconsequence wheren(S)=51(S/Jy)−2.15Jy−1sr−1,theprobabilitythatasource ofrapidrotationofthemoleculesinthecm-wavedata. withfluxdensitygreaterthan2mJylieswithintheFWHMofthe AMILAprimarybeamis0.12,andonly0.01withintheSCUBA field.ItislikelythereforethattheradiosourceL675Aisassociated 5 ACKNOWLEDGEMENTS withtheSCUBAcore. Wethank the staff of the Lord’sBridge Observatory for their in- Afurtherquestioniswhetherthecm-waveemissionmightbe valuable assistance in the commissioning and operation of AMI. explainedbythermal(Planckian)dustemission.Asinglegreybody spectrumwithadusttemperature,T ≈27K,mightbeusedtoex- AMIissupportedbyCambridgeUniversityandtheSTFC.NH-W, d plaintheLAfluxdensity,howeveritwouldrequireab of0.6.Such CR-G, TWS,TMOF, MO and MLD acknowledge the support of PPARC/STFCstudentships.Thisworkisbasedinpartonarchival avaluewould beunusual evenfor objectsknown topossess flat- dataobtainedwiththeSpitzerSpaceTelescope,whichisoperated teneddusttails,suchasprotoplanetary disks.Thissimplefitalso bythe JetPropulsion Laboratory, CaliforniaInstituteof Technol- neglectsthefluxlostbytheAMILAbaselinedistribution.SAob- ogyunder acontractwithNASA.Supportforthisworkwaspro- servationshavealreadyshownthissourcetopossessasignificant videdbyanawardissuedbyJPL/Caltech. amountofextendedemissionwhichwouldmakethisscenarioeven moreunlikely. The presence of a neutral or partially ionized wind from an outflowsourcethathasbeenshockedthroughencounteringadense REFERENCES obstacle (Torrelles et al. 1985; Rodr´ıguez et al. 1986) is used to AMI Consortium: Hurley-Walker N., et al., 2009, MNRAS, 396, understand the spectral indices seen towards exciting sources in 365 theradioregime(Curieletal.1990;Cabrit&Bertout1992).This AMIConsortium:ScaifeA.M.M.,etal.,2009,arXiv:0908.1655 model allows a spectral index range of 0.1 (optically thin) to -2 AMIConsortium:ScaifeA.M.M.,etal.,2008,MNRAS,385,809 (optically thick), which explains results which deviate from the AMIConsortium:ZwartJ.T.L.,etal.,2008,MNRAS,391,1545 value of a =−0.6 required by a spherically symmetric ionized BaarsJ.W.M.,GenzelR.,Pauliny-TothI.I.K.,WitzelA.,1977, wind(Wright &Barlow 1975; Panagia &Felli1975). Usingthis A&A,61,99 model as described in Curiel et al. (1989; 1990) the radio emis- BacciottiF.,Eislo¨ffelJ.,1999,A&A,342,717 sionisexpectedtobeopticallythin(t =0.1),consistentwiththe CabritS.,BertoutC.,1992,A&A,261,274 spectralindexseenacrosstheAMIband. Assumingadistanceof ClemensD.P.,YunJ.L.,HeyerM.H.,1991,ApJS,75,877 300pcandastellarwindwithawindspeedof200kms−1,wecan CurielS.,RaymondJ.C.,MoranJ.M.,RodriguezL.F.,CantoJ., calculatethattheAMIfluxdensitiestowardsL675Aareconsistent 1990,ApJ,365,L85 withamasslossof3.5×10−7M⊙yr−1.Amasslosssuchasthis CurielS.,RodriguezL.F.,BohigasJ.,RothM.,CantoJ.,Torrelles impliesamechanicalluminosityfromthewindofLmech≈1.1L⊙, J.M.,1989,ApL&C,27,299 comparabletothevaluesfoundbyCurieletalforL1448. DraineB.T.,LazarianA.,1998,ApJ,508,157 ThenatureoftheemissionseentowardsL944withtheAMI LadaC.J.,1985,ARA&A,23,267 LA is uncertain. The spectral index of this emission is consis- PanagiaN.,FelliM.,1975,A&A,39,1 tentwithspinningdustemissionoralternativelytheopticallythick Patnaik A. R., Browne I. W. A., Wilkinson P. N., Wrobel J. M., componentoffree–freespectrum.Suchafree–freespectrummight 1992,MNRAS,254,655 be exhibited at 16GHzby ultra-compact HII regions. However a TorrellesJ.M.,HoP.T.P.,RodriguezL.F.,CantoJ.,1985,ApJ, turn-overfrequency above16GHzwouldhaveanextremelyhigh 288,595 massandshouldthereforebeobviousinsub-mmobservations.This RodriguezL.F.,CantoJ.,TorrellesJ.M.,HoP.T.P.,1986,ApJ, needs tobe confirmed by either higher radio frequency measure- 301,L25 mentsinordertomeasuretheopticallythinregionofthespectrum VisserA.E.,RicherJ.S.,ChandlerC.J.,2001,MNRAS,323,257 andtheturn-over,orsub-mmmeasurementstoplaceconstraintson VisserA.E.,RicherJ.S.,ChandlerC.J.,2002,AJ,124,2756 themassofsucharegion. WaldramE.M.,PooleyG.G.,DaviesM.L.,GraingeK.J.B.,Scott Inconclusion,wehaveusedtheAMILAtoobserveasample P.F.,2009,arXiv:0908.0066 offiveLyndsDarkNebulaeselectedascandidatesforspinningdust WrightA.E.,BarlowM.J.,1975,MNRAS,170,41 emissionfromtheAMISAsampleofLyndsDarkNebulae(Paper I).Towardstwooftheseclouds(L1103andL1111)wedetectonly patchy diffuse emission characteristic of the presence of a larger ThispaperhasbeentypesetfromaTEX/LATEXfilepreparedbythe author. structurewhichhasbeenmostlyresolvedout.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.