ebook img

High energy emission from AGN cocoons in clusters of galaxies PDF

0.3 MB·English
by  M. Kino
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview High energy emission from AGN cocoons in clusters of galaxies

Astron.Nachr./AN999,No.88,789–793(2006)/DOIpleasesetDOI! High energy emission from AGN cocoons in clusters of galaxies M.Kino1,2,⋆ N.Kawakatu2,H.Ito3andH.Nagai2 1 ISAS/JAXA,3-1-1Yoshinodai,229-8510Sagamihara,Japan 2 NationalAstronomicalObservatoryofJapan,181-8588Mitaka,Japan 3 DepartmentofScienceandEngineering,WasedaUniversity,Tokyo169-8555,Japan 9 0 Received30May2005,accepted11Nov2005 0 Publishedonlinelater 2 n Keywords jets–galaxies:active–galaxies:gamma-rays–theory a J Gamma-rayemissionfromcocoonsofyoungradiogalaxiesispredicted.Consideringtheprocessofadiabaticinjectionof theshockdissipationenergyandmassoftherelativisticjetintothecocoon,wefindthatthethermalelectrontemperature 0 ofthecocoonistypicallypredictedtobeoftheorderof∼MeV,andisdeterminedonlybythebulkLorentzfactorofthe 2 jet.Togetherwiththetime-dependentdynamicsofthecocoonexpansion,wefindthatyoungcocoonscanyieldthermal Bremsstrahlungemissionsatenergies∼MeV.Hottercocoons(i.e.,GeV)foryoungersourcesarealsodiscussed. ] A (cid:13)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim G . h 1 Introduction AmongavarietyofAGNbubbles,apopulationsocalled p - compactsymmetricobjects(CSOs)hasbeenwidelyinves- o Relativisticjetsinactivegalacticnuclei(AGNs)arewidely tigated in various ways (e.g., Fanti et al. 1995; Readhead r t believedtobethedissipationofkineticenergyofrelativistic et al. 1996; O’Dea & Baum 1997; de Vries et al. 1997; s a motionwithaLorentzfactoroforder∼10producedatthe O’DeaandBaum1998;Stanghellinietal.1998;Snellenet [ vicinity of a super-massive black hole at the galactic cen- al.2000;Dallacasaetal.2000;Girolettietal.2003;Nagai ter(Begelman,BlandfordandRees1984forreviews).The etal.2006;Orientietal.2007;Kawakatuetal.2008).CSOs 1 v jetinpowerfulradioloudAGNs(i.e.,FRIIradiosources) aresmallerthan1kpcandthepreviousstudiessupportthe 8 issloweddownviastrongterminalshockswhichareiden- youth scenario in which CSOs propagate from pc scales 6 tified as hot spots. The shocked plasma then expand side- thrusting away an ambientmedium and growingup to FR 9 waysandenvelopethewholejetsystemandthisissocalled II radio galaxies.CSOs are thusrecognizedas newly born 2 a cocoonor a bubble (Fig. 1). The cocoonis a by-product AGNjets,andtheyarecrucialsourcestoexplorephysicsof . 1 oftheinteractionbetweenAGNjetsandsurroundingintra- AGNbubblesintheirearlydays. 0 clustermedium(ICM).Theinternalenergyoftheshocked In this study, we propose that “young AGN bubbles” 9 plasmacontinuouslyinflatesthiscocoon.Sofarlittleatten- areanewpopulationofγ-rayemittersintheUniverse.The 0 : tion has been paid to observational feature of the cocoon, layout of the paper is as follows. We review the expand- v sincetheyareusuallyinvisibleinGHzbandsbecauseofthe ingcocoonmodelin§2followingourpreviousworks(Kino i X synchrotron cooling for older electrons. 1 As a result, we andKawakatu2005;Kino,KawakatuandIto2007,KKI07 r justseeapartofthecocoon.Thevisiblepartisso-calledra- hereafter) We show the predicted MeV gamma emission a diolobesinwhichrelativelyfreshelectronsarefilledin.In from youngcocoonsin §3 . In §4, we furtherpredictGeV Fig.2,weshowonegoodsampleofcocoonemissionfrom gamma emission for smaller CSOs. Summary and discus- thepowerfulradiogalaxyCygnusAfortheevidenceofits sionisgivenin§5. existence.2 2 Cocooninflationby exhausted jet ⋆ Correspondingauthor:e-mail:[email protected] 1 Onthecontrary,theemissionfromtheshellmadeoftheshockedICM Here we consider the time-evolution of an expanding co- (seeFig.1)hasbeenexploredbymanyauthors(e.g.,Heinz,Reynoldsand cooninflatedbythedissipationenergyoftherelativisticjet Begelman1998;SutherlandandBicknell2007).Sincetheshellshavenon- viaterminalshocks.Theadiabaticenergyinjectionintothe relativisticvelocities,theemissionfromtheshellsispredictedintheX-ray cocoonisassumed.Massandenergyconservationfromthe band. 2 ThedataobtainedbyCarillietal.(1991)wasre-analyzedtoobtainthe jet into the cocoon, which govern the cocoon pressure Pc mapshowninFig.2.TheobservationwascarriedoutwithVLAAconfig- andmassdensityρ arewrittenas c urationat330MHzon1987August18.Thedataanalyzesisperformedby γˆ P (t)V (t) standardmannerwithAstronomicalImageProcessingSystem(AIPS).The c c c ≈2T01(t)A (t) (1) γˆ −1 t j j flux-scaleisdeterminedbycomparisonwith3C286and3C48usingthe c AIPStaskSETJY.TheimageisobtainedwiththeDIFMAPafteranumber ρ (t)V (t) c c ≈2J(t)A(t), (2) ofself-calibrationiterations. j j t (cid:13)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 790 M.Kino,N.Kawakatu,H.Ito&H.Nagai:Highenergyemissionfromcocoons entrainmentoftheenvironmentalmattertakesplaceduring thejetpropagation(e.g.,Mizutaetal.2004).Accordingto this,themassandkineticenergyfluxofthejetareregarded vc as constantin time. Then, the conditionsof T01 = const, j headAh radio lobe andJj =constleadstotherelationsofρj(t)Aj(t)=const andΓ (t)=const.InordertoevaluateL,weusetheshock j j R cocoon jump condition of Γ2ρ = β2 ρ (Kawakatu and Kino v c j j hs ICM h 2006)whereβ (= v /c)andρ isthe advancespeed hs hs ICM jet A Z of the hot spot βhs = 10−2β−2 and the mass density of c hs ICM, respectively. Using, the jump condition, L is given hot spot j by d eICxtMernρρρρal ICM Lj =2×1045Rk2pcβ−22n−2ergs−1 (3) where we use A(t) = πR2 (t), and the hot spot radius j hs R isgivenbyR = R (107 yr)/1 kpc.Asa fiducial hs kpc hs case,wesetthenumberdensityofthesurroundingICMas nICM(d) = ρICM(d)/mp = 10−2 cm−3n−2(d/30kpc)−2 Fig.1 AcartoonrepresentationofinteractionoftheICM wheredisthedistancefromthecenterofICMandcocoon with declining atmosphere and the relativistic jet in FR II (see Fig. 1). Since the change of the index from −2 does radio galaxy.As a result, most of the kinetic energyof jet notchangetheessentialphysicsdiscussedinthiswork,we is deposited in the cocoon and it is inflated by its internal focus on this case for simplicity. Since L is the ultimate j energy. sourceofthephenomenaassociatedwiththecocoon,allof theemissionpowerswhichwillappearin§3shouldbeless thanL. j The number density of total electrons in the cocoon is governed by the cocoon geometry and its plasma content. Forconvenience,we definethe ratioof“thevolumeswept bytheunshockedrelativisticjet”to“thevolumeoftheco- coon” as A(t). We denote V (t) = 2(π/3)R2Z3 (t), Z c hs hs satisfiesZ (t) = β ct,R ,andR ≡ R /Z < 1asthe hs hs c c hs cocoonvolume,thedistancefromthecentralenginetothe hot spot, is the radius of the cocoon body,and the aspect- ratio ofthe cocoon,respectively(e.g.,Kino andKawakatu 2005).PostulatingthatRandZ /R areconstantintime, hs hs A(t)≡ 2Aj(t)vjt isevaluatedas Fig.2 VLA image of Cygnus A at 330 MHz Vc(t) (A-configuration). The contour level starts with A(t)≈0.4R−2Rk2pcZ3−02β−−21 (4) 0.565 Jy beam−1 and increases from there by factors where Z = Z (107 yr)/30 kpc. Note that, in the case, 30 hs of 2. The convolving beam is 4.73 × 3.91 arcsec at the the time dependence of A is deleted since V ∝ t−3 and c position angle of 10.1◦. In this frequency, we can see the A ∝ t2. This case satisfies v = const (e.g., Conway j hs synchrotron emission from slightly colder electrons than 2002).The cocoonmass density ρ (t) is controlledby the c those emitting GHz ranges. Hence we can identify the massinjectionbythejetanditcanbeexpressedasρ (t)≈ c cocoon profile which are clearly different from familiar Γ ρ(t)A=β2 Γ−1ρ (Z (t))Awhereweusetheshock j j hs j ICM hs “classicaldoublelobe”. condition of Γ2ρ = β2 ρ . Adopting typical quanti- j j hs ICM ties of FR II sources(e.g., Begelman, Blandfordand Rees 1984), the number density of the total electrons in the co- whereγˆ ,V ,T01,J andA,aretheadiabaticindexofthe c c j j j coonisgivenby plasmainthecocoon,thevolumeofthecocoon,thekinetic −2 eonfetrhgeyjaent,drmesapsescfltiuvxeloy.fTthheejetot,taalndkitnheeticcroesnse-rsgeyctiaonndalmaraesas ne(t)≈4×10−5A¯n−2Γ10β−22(cid:18)107tyr(cid:19) cm−3(5) flux of the jet are Tj01 = ρjc2Γ2jvj, Jj = ρjΓjvj where ρj, where Γ = 10Γ , andA¯ = A/0.4. Here we assume that 10 and Γj are mass density and bulk Lorentz factor of the jet themassdensityofthee± pairplasmaisheavierthanthat (Blandford and Rees 1974). Hereafter we set v = c. The j of electron-protonone,andthenwe adoptρ ≈ 2m n in c e e totalkineticpoweroftherelativisticjetisdefinedasL ≡ j the light of previous works (Reynolds et al. 1996; Wardle 2T01(t)A (t)anditisassumedtobeconstantintime. j j etal.1998;SikoraandMadejski2000;KinoandTakahara Asforthemassandkineticenergyfluxofpowerfulrela- 2004).Theupperlimitofthermaln canbebasicallycon- e tivisticjets,numericalsimulationstellusthatnosignificant strained by the analysis of Faraday depolarization(Dreher (cid:13)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.an-journal.org Astron.Nachr./AN(2006) 791 etal.1987).However,thestrongFaradaydepolarizationob- ∼ 103 times larger than that νF ∼ 10−11 ergcm−2s−1. ν servedinCSOs(Cottonetal.2003)arelikelytobecaused This is still less than the threshold of INTEGRAL. This bydenseforegroundmattersuchasnarrowlineregion.There- may be the reason for the lack of detection of MeV emis- fore n in radio lobes of CSOs has not been clearly con- sion from youngcocoonsup to now.Fig. 3 showsthat the e strained. XMM/Newton satellites can detect the low energy part of Letusestimate theelectron(andpositron)temperature the thermalBremsstrahlung from youngcocoons. In MeV (T ) and proton temperature (T ). From Eqs. (1) and (2) energyband,aproposedmissionofdetectorSGDonboard e p together with the equation of state P ≈ 2n kT , we can the NeXT satellite with the eye up to ∼ 0.6 MeV (Taka- c e e directlyderivethetemperaturesas hashi et al. 2004) could detect the thermal MeV emission from those located slightly closer or youngerwith smaller kT ≈1Γ MeV, kT ≈2Γ GeV (6) e 10 p 10 Lorentzfactor. where we adopt the two temperaturescondition of kT ≈ e (m /m )kT . It should be stressed that the temperatures e p p aregovernedonlybyΓ.Itisalsoworthnotingthatthegeo- j metricalfactorsinEqs.(1)and(2)arecompletelycancelled 3.2 Candidatesources out.Onecannaturallyunderstandthesepropertiesbycom- paring the well-established properties such as supernovae In order to explore the extended cocoon emission in the and GRBs. Constant temperature in AGN jet can be real- X-ray band, one may think it is hard to distinguish over- ized bythe“continuous”energyinjectionintotheexpand- lapping emission from the compactcore of the AGN with ing cocoon whilst temperatures of astrophysical explosive limitedspacialangularresolutionofthecurrentX-raysatel- sourcessuchasgamma-rayburstsandsupernovaewouldbe lites. However, the averaged spectral index in X-ray band decreased because of “impulsive” injection of the energy. (Γ ) from the compact core of AGNs is softer than the Thus the resultant temperatures are uniquely governed by X Bremsstrahlungemission(KoratkarandBlaes1999).Hence Γ andtheyremaintobeconstantintime. j itispossiblefindcandidatesourcesoftheMeVcocoonby the value of Γ . As far as we know, there are two possi- X 3 MeV γ emissionsfrom ayoung cocoon ble candidatesforthe Bremsstrahlungemission.Thoseare B1358+624(Vinkatal.2006)andPKSB1345+125(Siemigi- 3.1 ThermalMeVBremsstrahlungemission nowskaet al. 2008)actuallyshowsΓ ≈ 1,both ofthem X were observed by XMM/Newton. Time variability of ob- Thetime-dependenceofthethermalBremsstrahlunglumi- servedspectraisalsothekeytodistinguishthem.Itisobvi- nosity LBrem is given by LBrem(t) ∝ n2e(t)Te3/2Vc(t) ∝ ousthatthecocoonemissionisconstantintimewhilstvari- t−1 based on the cocoonexpansionshown in the previous ousemissionsfromthecoreofAGNshouldbehighlyvari- section.Henceitisclearthatayoungercocoonsarebrighter able.Hencesteadyemissionsareconvincinglyoriginatedin Bremsstrahlung emitters than older cocoons. In a similar cocoons. way,brightersynchrotronluminosityhasbeenexpectedfor younger radio galaxies (e.g., Readhead et al. 1996). With Intriguingly,“the diffuse X-ray emission” has been in- relativisticthermalBremsstrahlungemissivity(Rybickiand deed detected in PKS B1345+125with the size of the ex- Lightman 1979), the luminosity of the optically thin ther- tendedemissionisoforder∼ 20kpcbySiemiginowskaet malBremsstrahlungemissionνL atenergies∼ 1MeVis al. (2008). The diffuse emission might be associated with ν estimatedas the radiolobesofthis source.TheX-rayemission is elon- −1 gatedtowardstheSouth-WestsimilarlytotheVLBIjetaxis t L (t)≈2×1040n¯2R2Θ3/2 ergs−1.(7)reportedbyStanghellinietal.(2001).Iftheemissionisas- Brem e 10 (cid:18)107yr(cid:19) sociatedwiththeradioemittingplasma,therearetwopos- Eq. (7) explains the reasons for the non-detection of the sibilitiestoexplaintheemission.Herewenewlystressthat thermal emission from older cocoons. One is simply be- the tail of the Bremsstrahlung emission could explain the causeitisnotverybright.Theotherisbecausethepredicted emission. Based on Eq. (7), the X-ray luminosity of the energyrangeis∼1MeV,theMeV-γastronomyisstillim- emissionshowsL ≈1×1043ergs−1.TheobservedL X X matureanditissometimescalledas“sensitivitygap”com- can be explained with the n ≈ 1 × 10−2 cm−3. Based e paredwiththeenergyrangebelow10keVandaboveGeV on Eq. (5), the n can be realized with β ∼ 10−1 and e hs ranges(Takahashietal.2004). n ∼ 10−1 cm−3 forinstance.Sincethe requiredn is ICM e In Fig. 3, we show the predictedvaluesof νF for the considerably large, the analysis of Faraday depolarization ν cocoons with t = 107 yr and t = 104 yr located at the willbecrucialforcheckingtheupperlimitofn .Theother e distance of D = 102 Mpc. The cocoon with t = 107 yr possibility is non-thermalemissions from the lobes which have νF ∼ 10−14 ergcm−2s−1. The detection thresh- is recently investigated by Stawarz et al. (2008).Observa- ν old of SPI instrument on board the INTEGRAL satellite tionsnearthepeakofthermalemissionNeXTsatellitewill is about νF ∼ 10−9 ergcm−2s−1 at ∼ 1 MeV. For a becrucialtodistinguishwhethertheemissionisthermalor ν youngcocoonwitht = 104 yr,thepredictedluminosityis nonthermalone. www.an-journal.org (cid:13)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 792 M.Kino,N.Kawakatu,H.Ito&H.Nagai:Highenergyemissionfromcocoons 4 Younger radio sources as “hotter” bubbles -8 10 keV MeV GeV -9 So far, we discuss the cocoon property in the phase of no 10 Integral significantcooling.Thephaseroughlycorrespondstomedium 10-10 sciozoelisnygmtimmeetsrcicaloesbjbeecctosm(MesShOosr)tearnfodrFsmRaIlIlegrasloauxriceess.,Scionocle- -2-1m s]10-11 NeXT GLAST c10-12 ing effects for CSOs are more effective than the case for g young cocoon largeronessuchasMSOsandFRIIs.Weconsistentlysolve [erν10-13 (t=104 yr) F asetofequationswhichdescribesyoungbubbleexpansions ν 10-14 includingtheeffectsofBremsstrahlungemissionandadia- 10-15 Newton old cocoon batic loss together with the initial conditions indicated by (t=107 yr) -16 CSOobservations.Thenwefindthatthebubbleshaveelec- 10 tron temperature of ∼ GeV at initial phases, the bubbles 102 103 104 105 106 107 108 109 thencooleddowntoMeVbytheadiabaticloss.Wefurther Energy [eV] estimate these γ-ray emissions and show that it could be Fig.3 Model prediction of MeV-peaked thermal detectedwithFermi(GLAST)(Kinoetal.2009). bremsstrahlungemissionfromcocoonslocatedatD =102 Mpc.Thepredictedemissionfromyoungcocoonisbrighter enoughtodetectinX-raybandwhilstthatfromanoldco- 5 Summary anddiscussion coonismuchdarkerthanthedetectionlimits. WehaveinvestigatedtheluminosityevolutionsofAGNco- coons together with the dynamicalevolution of expanding Fanti, C., Fanti, R., Dallacasa, D., Schilizzi, R.T., et al. 1995, cocoon.Belowwesummarizethemainresultsofthepresent A&A,302,317 work. GirolettiM.,GiovanniniG.,TaylorG.B.,ConwayJ.E.,LaraL., 1. We newlypredictthe Bremsstrahlungemissionpeaked VenturiT.,2003,A&A,399,889 Guainazzi,M.,Siemiginowska,A.,Stanghellini,C.,Grandi,P.,Pi- atMeV-γbandasaresultofstandardshockdissipation concelli,E.,AzubikeUgwoke,C.,2006,A&A,446,87 ofrelativisticjetsinAGNs.Thetemperatureoftheco- Gugliucci, N.E., Taylor, G.B., Peck, A.B., Giroletti, M. 2005, coonisgovernedonlybythebulkLorentzfactorofthe ApJ,622,136 jetΓ .TheelectrontemperatureT relevanttoobserved j e Heinz,S.,Reynolds,C.S.,Begelman,M.C.,1998,ApJ,501,126 emissionsistypicallypredictedintherangeofMeVfor Kawakatu,N.,Kino,M.,2006,MNRAS,370,1513 Γ ∼ 10. Constant temperatures of plasma in the co- Kawakatu,N.,Nagai,H.,Kino,M.,2008,ApJ,687,141 j cooncan be realized becauseof the continuousenergy Kino,M.,Takahara,F.,2004,MNRAS,349,336 injectionbythejetwithconstantΓ (KKI07). Kino,M.,Kawakatu,N.,2005,MNRAS,364,659 j Kino, M., Kawakatu, N., Ito, H., 2007, MNRAS, 376, 1630 2. We further investigate younger bubble expansions in- (KKI07) cludingtheeffectsofBremsstrahlungemissionandadi- Kino,M.,Ito,H.,Kawakatu,N.,Nagai,H.,2009,MNRAS,sub- abaticlosstogetherwiththeinitialconditionsofCSOs. mitted(arXiv:0812.1850) Thenwefindthatthelobesinitiallyhaveelectrontem- KoratkarA.,BlaesO.,1999,PASP,111,1 peratureofGeV andthelobesthencooldownto MeV Mizuta,A.,Yamada,S.,Takabe,H.,2004,ApJ,606,804 bytheadiabaticloss.Theγ-rayemissionscouldbede- Nagai,H.,Inoue,M.,Asada,K.,Kameno,S.,Doi,A.,2006,ApJ, tectedwithFermi(GLAST)(Kinoetal.2009). 648,148 O’Dea,C.P.,Baum,S.A.,1997,AJ,113,148 O’Dea, C. P., Mu, B., Worrall, D. M., Kastner, J., Baum, S., de Acknowledgements. WewouldliketothankC.R.KaiserandM. Vries,W.H.,2006,ApJ,653,1115 Sikorafor valuable comments. NK issupported byGrant-in-Aid Orienti,M.,Dallacasa,D.,Stanghellini,C.2007,A&A,475,813 forJSPSFellows.HIacknowledgetheGrantforSpecialResearch Polatidis,A.G.,Conway,J.E.2003,PASA,20,69 ProjectsatWasedaUniversity. Readhead,A.C.S.,Taylor,G.B.,Pearson,T.J.,Wilkinson,P.N., 1996,ApJ,460,634 References Reynolds,C.S.,Fabian,A.C.,Celotti,A.,Rees,M.J.,1996,MN- RAS,283,873 Begelman,M.C.,Blandford,R.D.,Rees,M.J.,1984,Rev.Mod. Siemiginowska, A., LaMassa, S., Aldcroft, T. L., Bechtold, J., Phys.,56,255 Elvis,M.,2008,ApJ,684,811 Blandford,R.D.,Rees,M.J.,1974,MNRAS,169,395 Snellen,I.A.G.,Schilizzi,R.T.,Miley,G.K.etal.2000,MNRAS, Carilli,C.L.,Perley,R.A.,Dreher,J.W.,Leahy,J.P.,1991,ApJ, 319,445 383,554 StanghelliniC.,O’DeaC.P.,DallacasaD.,BaumS.A.,FantiR., Cotton,W.D.,etal.,2003,PASA,20,12 FantiC.,1998,A&AS,131,303 Dallacasa, D., Stanghellini, C., Centonza, M, Fanti, R. 2000, Stanghellini,C.,Dallacasa,D.,O’Dea,C.P.,Baum,S.A.,Fanti, A&A,363,887 R.,Fanti,C.,2001,A&A,377,377 DeVries,W.H.,Barthel,P.D.,O’DeaC.P.,1997,A&A,321,105 Stawarz, Ł., Ostorero, L., Begelman, M. C., Moderski, R., Dreher,J.W.,Carilli,C.L.,Perley,R.A.,1987,ApJ,316,611 Kataoka,J.,WagnerS.,2008,ApJ,680,911 (cid:13)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.an-journal.org Astron.Nachr./AN(2006) 793 Sutherland,R.S.,Bicknell,G.V.,2007,ApJS,173,37 Takahashi,T.,etal.,2004,NewAR,48,269 Vink, J., Snellen, I., Mack, K.-H., Schilizzi, R., 2006, MNRAS, 367,928 Wardle, J. F. C., Homan, D. C., Ojha, R., Roberts, D. H., 1998, Nature,395,457 www.an-journal.org (cid:13)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.