ebook img

HC3N Observations of Nearby Galaxies PDF

0.2 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview HC3N Observations of Nearby Galaxies

Astronomy&Astrophysicsmanuscriptno.jiang_hc3n_v11 cESO2017 (cid:13) January3,2017 ∗ ⋆ HC N Observations of Nearby Galaxies 3 (ResearchNote) Xue-JianJiang1,5,Jun-ZhiWang2,YuGao1,5,andQiu-ShengGu3,4,5 1 Purple Mountain Observatory & Key Laboratory for Radio Astronomy, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing210008,China;Email:[email protected] 2 ShanghaiAstronomicalObservatory,ChineseAcademyofSciences,80NandanRoad,Shanghai200030,China 7 1 3 SchoolofAstronomyandSpaceSciences,NanjingUniversity,Nanjing210093,China 0 2 4 KeyLaboratoryofModernAstronomyandAstrophysics(NanjingUniversity),MinistryofEducation,Nanjing210093,China n 5 CollaborativeInnovationCenterofModernAstronomyandSpaceExploration,Nanjing210093,China a J 2 Received 2016monthday;accepted 2016 monthday ] A ABSTRACT G Aims.WeaimtosystematicallystudythepropertiesofthedifferenttransitionsofthedensemoleculargastracerHC Ningalaxies. 3 . Methods. We have conducted single-dish observations of HC N emission lines towards a sample of nearby gas-rich galaxies. h 3 HC N(J=2-1) wasobserved in 20 galaxies withEffelsberg 100-m telescope. HC N(J=24-23) was observed in nine galaxies with p 3 3 the10-mSubmillimeterTelescope(SMT). - o Results.HC3N2-1isdetectedinthreegalaxies:IC342,M66andNGC660(> 3σ).HC3N24-23isdetectedinthreegalaxies:IC r 342,NGC1068andIC694.ThisisthefirstmeasurementsofHC3N2-1inarelativelylargesampleofexternalgalaxies,althoughthe t detectionrateislow.FortheHC N2-1non-detections,upperlimits(2σ)arederivedforeachgalaxy,andstackingthenon-detections s 3 a isattemptedtorecovertheweaksignalofHC3N.ButthestackedspectrumdoesnotshowanysignificantsignsofHC3N2-1emission. [ TheresultsarealsocomparedwithothertransitionsofHC3Nobservedingalaxies. Conclusions.ThelowdetectionrateofbothtransitionssuggestslowabundanceofHC3Ningalaxies,whichisconsistentwithother 1 observational studies.Thecomparison betweenHC NandHCNorHCO+showsalargediversityintheratiosbetweenHC Nand 3 3 v HCNorHCO+.MoreobservationsareneededtointerpretthebehaviorofHC Nindifferenttypesofgalaxies. 3 2 1 Keywords. galaxies:active–galaxies:ISM–galaxies:evolution–ISM:molecules 3 0 0 1. Introduction asphotodissociationregions(PDRs)dominatedbyyoungmas- . 1 sivestars, X-raysdominatedregions(XDRs) inducedbyactive Molecular lines play an essential role in our understanding 0 galacticnucleus(AGNs),andshockwavesbycloud-cloudcolli- of star formation activity and galaxy evolution. With molecu- 7 sions(Aladroetal. 2011;Greveetal. 2009;Aladroetal. 2011; 1lar lines of different species and their different transitions, not Costagliolaetal.2011;Vitietal.2014). :only the chemical composition of the interstellar medium can v be investigated, but other important physical parameters, such i Oneoftheinterstellarspeciesthatbenefitsfromtheupgraded Xas temperature, pressure, density, and non-collisional pumping facilities is cyanoacetylene(HC N). HC N was firstly detected 3 3 mechanism can be derived as well (e.g., Henkeletal. 1991; r in 1971 at 9.0977 GHz (J=2-1) in the Galactic star forming aEvans 1999; Fukui&Kawamura 2010; Meier&Turner 2012; region Sgr B2 (Turner 1971). The critical density of HC N is 3 Meieretal. 2014). New facilities providing wide band and comparable to the widely-used dense gas tracer HCN and can highly sensitive instruments are making weak line surveysand alsotracedensemoleculargasaroundstarformingsites.HC N 3 multi-speciesanalysisfeasible,andthedetectionsandmeasure- has been detected in many star formation regions in the Milky ments of a variety of species, are helping us to reveal the gas Way with severaltransitions from centimeter to sub-millimeter components of galaxies, and how their abundances, densities, (e.g., Suzukietal. 1992). Due to the small rotational constant ratiosreflectthe radiativepropertiesofgalaxies.Multi-species, ( 1/13 of CO), there are many closely spaced rotational tran- multi-transition molecular lines can be combined to diagnose ∼ sitionsofHC N(separatedbyonly9.1GHz)atcentimeterand theevolutionstageofgalaxies(Baanetal.2014),becausediffer- 3 millimeter wavelengths, and its levels are very sensitive to the entspeciesaresensitivetodifferentphysicalenvironments,such changesinexcitation(Meier&Turner2012).Thismakesiteas- ⋆ Based on observations with the 100-m telescope of the MPIfR ierto conductmulti-transitionobservationsofHC3N linesthan (Max-Planck-InstitutfürRadioastronomie)atEffelsberg,andtheSub- other dense molecular gas tracers, and can help better under- millimeterTelescope(SMT).TheSMTisoperatedbytheArizonaRa- stand the excitationconditionsof star forming regions.In con- dioObservatory(ARO),StewardObservatory,UniversityofArizona. trast,thehigh-J linesofotherdensemoleculargastracerssuch Articlenumber,page1of8 A&Aproofs:manuscriptno.jiang_hc3n_v11 asHCNandHCO+ areatveryhighfrequencies,thusitisdiffi- 2.2.HCN24-23observationswiththeSMT10-m 3 culttoobservethemwithground-basedtelescopes.Anotherad- HC N (J = 24 23) (ν = 218.324 GHz) of nine galaxies vantageofusingHC NlinesisthatHC Nisverylikelyoptical 3 rest 3 3 − wasobservedin2009withtheSMT10-mtelescope.TheHPBW thin even in low-J transitions, due to the relatively low abun- is about33 at 218 GHz for SMT, and a single pointingwas dance (Irvineetal. 1987; Lindbergetal. 2011). And low opac- ′′ ∼ usedforeachgalaxytowardtheircentralpositions.Weusedthe ity is important for accurate estimate of dense molecular gas ALMASidebandSeparatingReceiverandtheAcousto-Optical- massforthestudyofrelationshipbetweendensemoleculargas Spectrometers (AOS), which have dual polarization, 970 MHz andstarformation(Gao&Solomon2004a,b;Wangetal.2011; ( 1300 km s 1) bandwidth and 934kHz channelspacing. Ob- Zhangetal.2014). − ∼ servationswerecarriedoutwiththebeam-switchingmodewith Therehave beeneffortsto detectHC N in nearbygalaxies, 3 achopthrowof2 inazimuth(AZ)andachoppingfrequencyof mainly in millimeter band. Observations suggest that HC N is ′ 3 2.2Hz.Pointingandfocuswerecheckedabouteverytwohours related to the warm, dense star forming gas, and is easily dis- by measuring nearby QSOs with strong millimeter continuum sociated by UV radiation(Henkeletal. 1988; Costagliolaetal. emission. The typicalsystem temperatureat 218GHz was less 2011;Costagliolaetal.2011;Lindbergetal.2011;Aladroetal. than300K, and the on-sourcetime foreach galaxywas 60– 2011, Aladroetal. 2015). HC3N was found to be unusually 168minutes. ∼ luminous in NGC 4418, and it is attributed to its high abun- dance (10 7) as well as the intense radiation field in the − dense and warm gas at the center of NGC 4418 (Aaltoetal. 2.3.DataReduction 2007;Costagliola&Aalto2010).Meier&Turner(2005,2012); Meieretal.(2011,2014)presentedhighresolutionobservations The basic parameters of our sample galaxies are listed in Ta- of HC N (J=5-4,10-9,12-11and16-15)ofa few verynearby ble1. The data were reduced with the CLASS program of the 3 galaxies, and gave detailed analysis of the galactic structures GILDAS1 package. First, we checked each spectrum and dis- andmorphologythattracedbyHC Nandotherdensegastrac- cardedthespectrawithunstablebaseline.MostoftheEffelsberg 3 ers(HNC, HCN, CS, etc.).However,these resultsare still lim- spectrado nothave flatbaselines, butoverseveralhundredkm ited bytheir samplesize, andthe chemicalprocessof HC3N is s−1 near the line the baselines can still be fixed. In the SMT stillunclear.Largersamplesarestillnecessaryforanalyzingthe spectra the image signal of strong CO 2-1 in the upper side- propertiesof HC N and how it relate to othergalactic parame- bandaffectthebaselineofthelowersidebandandforM82and 3 ters.InthispaperwepresentthefirstsystematicsurveyofHC3N Arp220theHC3N24-23iscontaminated.Butforothergalaxies (J =2 1)andHC3N(J =24 23)inarelativelylargesample theimageCOlinedoesnotaffecttheHC3Nline.Thenwecom- of near−by galaxies. And the re−sults are compared with the ob- binedspectrawithbothpolarizationsofthesamesourceintoone servationsofHC Ninothertransitions.Thecriticaldensitiesof spectrum.Dependingon the qualityof the spectralbaselines, a 3 HC NJ =2 1andHC NJ =24 23areabout3 103cm 3 first-orderorsecond-orderfittingwasusedtosubtractbaselines 3 3 − and 4 106−cm 3, respectively. A−nd the upper sta×te energies from all averaged spectra. The identifications of the transition − (Eu) of×the two transitions are 1.3 K and 131 K, respectively frequenciesofHC3NhavemadeuseoftheNISTdatabaseRec- (Costagliola&Aalto2010). ommendedRest Frequenciesfor Observed Interstellar Molecu- larMicrowaveTransitions2. To reduce the noise level, the spectra are smoothed to ve- locity resolutions 20 40 km s 1. The velocity-integrated − 2. Observations&Datareduction intensities of the H∼C N l−ine are derived from the Gaussian fit 3 of the spectra, or integrated over a defined window if the line We select nearby infrared bright galaxies (Sandersetal. 2003) profiles significantly deviate from a Gaussian. The intensities withIRAS60µmfluxgreaterthan30Jyanddeclinationgreater than 21 todothissurvey.Itisnotacompletebutrepresenta- arecalculatedusing I = R Tmbdv, whereTmb isthe main beam − ◦ brightnesstemperature.Molecularlineintensityinantennatem- tive sample of infrared bright galaxies. The sample consists of perature (T ) is converted to main beam temperature T via 21galaxies.Notethatduetothe differentbeamsize ofthetwo A∗ mb T = T /MBE,withthemainbeamefficiencyMBE=53%at telescopesweused,themergerArp299(IC694andNGC3690) mb A∗ 18GHzforEffelsbergtelescope,and70%at218GHzforSMT were observedas a single pointing by Effelsberg100-m, while during the observations. The flux density is then derived from thetwogalaxieswereobservedseparatelybytheSMT10-m. T ,usingS/T =0.59Jy/KfortheEffelsbergtelescope,and mb mb 24.6Jy/KfortheSMT. 2.1.HCN2-1observationswiththeEffelsberg100-m 3 HC N(J = 2 1)(ν =18.196GHz)of20galaxieswasob- 3. Results&Discussion 3 rest − servedwithEffelsberg100-mtelescopein2010.TheHalfPower Beam Width (HPBW) is 46.5 at 18 GHz for the 100-m tele- The spectral measurements and estimated intensities of the ′′ scope. We used the 1.9 cm band receiver,500 MHz bandwidth HC3Nlines,includingRMSnoiseandon-sourcetime,arelisted with 16384 channels correlator setup, which provided 8300 inTable2(HC3N2-1)andTable3(HC3N24-23). km s 1 velocity coverageand 0.5 km s 1 velocity res∼olution − − ∼ during the observations. Position-switching mode with beam- 3.1.HCN2-1 throwsofabout 2 wasused.Pointingandfocuswerechecked 3 ′ ± about every two hours. The typical system temperature of the Amongthe20galaxiesobservedbyEffelsberg100-mtelescope, Effelsbergobservationswasabout46K.Theon-sourcetimefor HC N 2-1 is detected in three galaxies: IC 342, NGC 660 and 3 eachgalaxyisabout14–47minutes.Theweatherduringtheob- servationsisnotideal,andthebaselinesofmanysourcesareaf- 1 http://iram.fr/IRAMFR/GILDAS/ fectedandinducedartificialfeatureswhicharehardtoremove. 2 http://www.nist.gov/pml/data/micro/index.cfm Articlenumber,page2of8 Jiang,Wang,Gao&Gu:HC N observationsofNearbyGalaxies(RN) 3 Table1.Thesourcelistofthe21galaxiesobservedonHC N emissionusingtheEffelsberg100mandtheSMTtelescope.Thecolumnsare:(1) 3 galaxyname,(2)and(3)coordinates,(4)Heliocentricvelocities,(5)distances,(6)totalinfraredluminosities(fromSandersetal.2003),(7)CO 1-0linewidth(FWHM)ofthegalaxies,and(8)thetelescopethesegalaxieswereobservedwith. Galaxy RA(J2000)Dec V Distance logL ∆V Telescope Helio IR CO h m s (kms 1) (Mpc) (L ) (kms 1) ◦ ′ ′′ − − (1) (2) (3) (4) (5) (6⊙) (7) (8) NGC520 012434.9 +034730.0 2281 30.22 10.91 270 Effelsberg NGC660 014302.4 +133842.0 850 12.33 10.49 280 Effelsberg NGC891 022233.4 +422057.0 528 8.57 10.27 110 Effelsberg NGC972 023413.4 +291841.0 1543 20.65 10.67 220 Effelsberg NGC1068 024241.4 000045.0 1137 13.7 11.27 280 Effelsberg&SMT IC342 034648.5 −+680546.0 31 4.60 10.17 72.8a Effelsberg&SMT UGC2855 034820.7 +700758.0 1200 19.46 10.75 ... Effelsberg UGC2866 035014.9 +700540.9 1232 20.06 10.68 ... Effelsberg NGC1569 043049.0 +645053.0 104 4.60 9.49 90 Effelsberg − NGC2146 061839.8 +782125.0 882 16.47 11.07 320 Effelsberg&SMT NGC2403 073651.3 +653629.9 161 3.22 9.19 90 Effelsberg M82 095553.1 +694041.0 187 3.63 10.77 150 Effelsberg&SMT NGC3079 100157.8 +554047.0 1116 18.19 10.73 380 Effelsberg NGC3310 103845.9 +533012.0 993 19.81 10.61 140 Effelsberg M66 112015.0 +125930.0 727 10.04 10.38 180 Effelsberg IC694 112833.8 +583345.0 3120 47.74 11.63 250 Effelsbergb&SMT NGC3690 112830.8 +583343.0 3120 47.74 11.32 260 Effelsbergb&SMT Mrk231 125614.2 +565225.0 12600 171.84 12.51 167 Effelsberg Arp220 153457.1 +233010.0 5352 79.90 12.21 360 Effelsberg&SMT NGC6240 165258.9 +022403.0 7160 103.86 11.85 420 SMT NGC6946 203452.6 +600912.0 53 5.32 10.16 130 Effelsberg&SMT Notes.(a) forIC342,the∆V isofCO2-1fromGao&Solomon(2004a);forothergalaxies∆V areofCO1-0fromYoungetal.(1995).(b)The Arp299system(IC694andNGC3690)wasobservedasasinglepointingbytheEffelsberg. M66(SeeFigure1).ThisisthefirstreportofHC N2-1detec- rive upper limits of the integrated intensity for each galaxy (2 3 tionsin externalgalaxies,althoughlimited bythe SNR (Signal σ,whereσ =RMS √δV ∆V)andshowtheminTable2.Note toNoiseRatio)thedetectionrateislow. that the linewidth of HC N· is likely narrower than that of CO, 3 andsuchassumptionmightovereistimatetheupperlimitsofin- tegratedintensity,thusisonlyaroughestimate.Theupperlimits IC342: IC342hasthestrongestpeakintensity(Tmb 14mK) areintherangeof 0.3–1.2Kkms 1.Forthosenon-detection ∼ − ofHC N2-1inthesample,whichisabouttwicethestrengthas ∼ 3 galaxies, We also stack their spectra together, weighted by the theHC N(9-8)lineofIC342detectedbyIRAM30-mtelescope 3 RMSlevelofeachgalaxy,toexamifacumulatedsignalcanbe (Aladroetal.2011),whilethelinewidth(FWHM 60kms 1) − obtained(seeFigurer1).AlthoughtheRMSofthethestacking ∼ issimilartotheirresult. HC N2-1spectrumisreduceddownto0.66mK,wedonotsee 3 anysignsofemission(ataresolutionof30kms 1).Sincethese − galaxies have similar linewidth (100–400 km s 1), we can es- NGC660: The detected HC N 2-1 in NGC 660 hasa similar − 3 timate the stacked upperlimit assuming a linewidth of 200km linewidth(FWHM 294.7kms 1)to CO 1-0( 280kms 1). ∼ − ∼ − s 1,basedontheRMS(0.66mK)ofthestackedspectrum.Thus While the HC N survey by Lindbergetal. (2011) did not ob- − 3 the 2 σ upper limit of these galaxies is about 0.26 K km s 1. serveNGC660,its10-9and12-11transitionswerenotdetected − To eliminatethe possible effectinducedby differentlinewidths by Costagliolaetal. (2011). This difference in the detection of of galaxies, we also tried to group the non-detection galaxies HC N lines may imply that there is little warm and dense gas 3 basedon their CO linewidth. Galaxieswith CO FWHM (Table contentinNGC660,thusthehigh-JHC Nlinescannotbeex- 3 1) wider than 200 km s 1 are stacked as one group, and other cited. − galaxiesarestackedasanothergroup.Neithergroupshowsany signsofemission. M66: InM66HC N2-1isonlydetectedonabout2σlevel, 3 butthisisthefirsttentativedetectionofHC NinM66.Itwasnot 3 observedbyCostagliolaetal.(2011)norLindbergetal.(2011). 3.2.HCN24-23 3 non-detections: Duetothepoorquality(andprobablyinsuffi- cientintegrationtime)oftheHC N2-1data,16outof19galax- AmongtheninegalaxiesobservedbySMT,HC N(J=24-23)is 3 3 ieswerenotdetected.Assumingtheirlinewidthisapproximate detectedinthreegalaxies:IC342,NGC1068andIC694(Fig- to CO 1-0 linewidth (FWHM, from Youngetal. 1995), we de- ure2). Articlenumber,page3of8 A&Aproofs:manuscriptno.jiang_hc3n_v11 IC342: HC N 24-23 of IC 342 was previously detected and 24-23,andcannoteasilyestimatethefillingfactors.Alongwith 3 measured by Aladroetal. (2011), and our observation obtains thelargeuncertaintyoftheemissionintensitiesmeasurements,it consistentresult,althoughcomparingtotheirobservationwedo isdifficulttoestimatethebrightnesstemperatureofthesample. notdetectH COsimultaneously.Inourobservations,IC342is To better understand the excitation environment of HC N, 2 3 theonlygalaxydetectedinboth2-1and24-23transitions.The the effect of free-free and synchrotron emission near 18 GHz line center andwidth ofthe two transitionsare similar, consid- should be also taken into account, as they are more prominent eringobservationaluncertainties.Thismightimplythatthetwo than that in millimeter band that is dominated by dust thermal transitionshavesimilaremittingarea.Andtheratiobetweenthe emission.We detectHC N2-1linesinemissionandnotin ab- 3 integratedintensitiesofHC N24-23/HC N2-1isabout0.6. sorption, and this may be due to the fact that the beam filling 3 3 factoroftheHC Ngasishigherthantheradiocontinuum.Inthe 3 highresolutionradioobservationstowardsa few nearbygalax- NGC1068: In NGC 1068, the integrated intensity of HC N 3 ies(Tsaietal.2006),itisfoundthatcompactradiosourcescon- 24-23isabout2.0Kkms 1(inT ),whichisstrongerthanthat − mb tribute20%–30%ofthetotal2cm(15GHz)emissionfromthe of HC N 10-9 ( 1.1 K km s 1) reported by Costagliolaetal. 3 ∼ − centralkiloparsecofthesegalaxies.Incontrast,thedistribution (2011).Itmayimplythatthereissufficientwarmanddensegas, ofgaswithmoderatecriticaldensitysuchasHC N2-1islikely whichisabletoexcitethehightransitionHC N24-23line.Be- 3 3 morediffuse. sides, it could also be affected by the strong AGN signature of Comparingtootherdensemoleculargastracerssuchasthe thisgalaxy(Wangetal.2014;Tsaietal.2012). popular HCN and HCO+, HC N is generally optically thin in 3 galaxiesowingtoitsrelativelylowabundance,whichmakesitan IC694: Previous observation only obtained upper limits of idealdensegastracerforcalculatingthecolumndensityand/or HC N12-11ForIC694(Lindbergetal.2011).Inourobserva- mass of molecular hydrogen content of galaxies. In the obser- 3 tions,atentativedetectioninIC694(>2σ)isobtained.Theline vationsbyLindbergetal.(2011)andCostagliolaetal.(2011)a profileofIC694obviouslydeviatesfromaGaussian,sowede- lowdetectionrate ofHC3N was reportedandwas explainedas rivetheHC3Nintensitybyintegratingthelinewithinawindow theintrinsicallyfaintemissionofHC3N,andourstackedresult of400kms−1width(Table3). also implies that the HC3N is quite weak in the non-detected Wenotethat,inNGC1068andIC694,HC3N24-23ispossi- galaxies(2σupperlimit=0.14Kkms−1),whichisalsoinfavor blyblendedwithH CO3(0,3)–2(0,2)emission(f =218.22219 ofthisexplanation.Thenon-detectioninM82isconsistentwith 2 ν GHz).Theupperstateenergyofthisispara-H2COlineisabout thelowabundanceofHC3NinM82suggestedbyAladroetal. 10.5K, whichislikely to beexcitedin these cases. The H2CO (2011), that HC3N traces a nascent starburst of galaxy, and it lineisshiftedby141.1kms 1or-102MHzfromtheHC N24- canbe easily destroyedbythe UV radiationin PDRs, whichis − 3 23 line, andit is unclearthathow muchintensityof HC N 24- ubiquitousinactivegalaxies. 3 23 in NGC 1068and IC 694 is contributedby H CO (see Fig- In very recent line surveys of a few local active galaxies 2 ure2).Westilllackenoughdatatodisentanglethisissue,andcan (AGN and/or Starbursts, Aladroetal. 2015; Costagliolaetal. only compare with other observations. For example, in the ob- 2015), several HC3N transitions in 3mm band (HC3N J=10-9, servationofM82byGinardetal.(2015),theyshowedthatnear J=11-10andJ=12-11)weredetected.TheALMAobservations the frequency of 145 GHz, H2CO 2(0,1) – 1(0,1) is as strong byCostagliolaetal.(2015)evenreportedtheHC3NJ=32-31ro- as HC3N 16-15. H2CO is not detected in M 82 in 3mm band tationaltransition,and some of the vibrationallyexcitedHC3N (Aladroetal. 2015). In the observations toward NGC 4418 by lines.Thelatesthighresolutionlinesurveysinafewverynearby Aaltoetal. (2007), they showed that HC N 16-15 is blended galaxies (Meier&Turner 2005, 2012) and Meieretal. (2014, 3 wgriathtedHl2iCneOin,taenndsiHty2.CO may contribute 20% of the total inte- r2o0u1g5h)lyshGowMCthastc,atlhees)daerreivaebdoHutCs3eNvearbauln1d0a−n1c0e(sre(loantiv∼e1to00Hp2c),, whichisaboutanorderofmagnitudelowerthantheabundance ofHCNandsomeothermolecules. non-detections: ThespectraofM82andArp220areseriously TheresultsinAladroetal.(2015)showthat,theHC Nfrac- 3 contaminatedbytheimagesignalofCO2-1fromtheupperside- tional abundance is generally several times lower than that of band(ν=230GHz),whichisstrongandwidehencedifficultto HCN,HCO+ andCS.AndcomparingtootherAGNorstarburst remove.Asaconsequencewecouldnotextractthespectrumof galaxiesintheirsample,HC Nabundanceissignificantlyhigher 3 HC3Nproperly.WetreattheHC3N24-23inM82andArp220 inthetwoULIRGsArp220andMrk231,implyingitissuited asnon-detections,andtheir2σupperlimitsarealsoonlyindica- forstudyingtheactivityofULIRGs.Besides,therewasnoobvi- tive. Although not contaminated by adjacent CO image signal, ousevidenceoftheaffectionbyAGNontheintensityofHC N. 3 HC3N24-23wasnotdetectedinNGC2146,NGC6946,NGC Four galaxies in our sample (NGC 1068, M 82, Mrk 231 and 3690andNGC6240.Forthesenon-detectionwepresent2σup- Arp220)werealsostudiedinAladroetal.(2015).Wecompare per limit of the integrated intensity of HC3N 24-23 in Table3. our data with their results, and the HC3N spectra of Mrk 231 Only four galaxies are not contaminated by CO image signal, andNGC1068fromAladroetal.(2015)areshowninFigure1 thusnostackingisimplementedfortheirHC3N24-23spectra. and 2, to be compared with the non-detection of HC3N 2-1 in Mrk 231, and the detection of HC N 24-23 in NGC 1068, re- 3 spectively.Theirresultsshowthat,in3mmband,theintensities 3.3.Discussion:HCNingalaxies 3 betweenthethreetransitionsofHC N (10-9,11-10and12-11) 3 The HPBW of SMT and Effelsberg observations are 33 and differ not too much, and the peak temperature (T ) of HC N ′′ mb 3 46 ,respectively,whichshouldbeabletocoverthebulkofthe are 4mKforNGC1068, 11mKforM82,and 1.1–1.7 ′′ ∼ ∼ ∼ sample galaxies, especially the galaxy center. Thus our obser- mKforMrk231,and 10mKforArp220.Inourresults,the ∼ vations should be able to cover the region where the majority detectionof HC N 24-23in NGC 1068shows a peak T 7 3 mb ∼ ofdensegasresides.However,withsingle-dishobservationswe mK,whilethenon-detectionofHC N 2-1inMrk231andArp 3 cannotconstraintheemissionsizeofeitherHC N2-1orHC N 220showthat,theRMSwehave( 4–6mK)mightnotbelow 3 3 ∼ Articlenumber,page4of8 Jiang,Wang,Gao&Gu:HC N observationsofNearbyGalaxies(RN) 3 Fig.1.SpectraofthedetectedHC N(J=2-1)inNGC660,M66,IC342bytheEffelsberg.Atthebottomrowalsoshowsthestackedspectraand 3 thespectraofMrk231fromAladroetal.(2015).BluedashedlinesaretheGaussianfitoftheHC N2-1lines.TemperaturescaleisT inmK.A 3 mb colourversionofthisfigureisavailableintheonlinejournal. Fig.2.SpectraofdetectedHC N(J=24-23)inNGC1068,IC342andIC694bytheSMT.AtthebottomleftalsoshowsthespectraofNGC1068 3 fromAladroetal.(2015)forcomparison.BluedashedlineistheGaussianfit.NotethatinIC694itisdifficulttodistinguishtheHC Nemission 3 fromthepossiblyblendedH COlines.TemperaturescaleisT inmK.Acolourversionofthisfigureisavailableintheonlinejournal. 2 mb enoughtodetectiontheHC Nlines.Hereweconcludethat,be- HCO+. We list the ratio betweenthe flux densityof HC N and 3 3 sides the low abundanceof HC N, insufficientintegrationtime HCN1-0inTable2and3,respectively.Becausethedataquaity 3 andnotidealobservingconditionsarethemaincauseforthelow of this work is not good enough for us to present an accurate detectionrateofHC N. estimateontheHC Nfluxdensity,theratiosareonlytentative. 3 3 We see a large variation in the ratios, which could be an ev- It would be interesting to compare the intensity ratios be- idence of the essentially large variation of HC N luminosities tween HC N and other dense gas tracers, such as HCN and 3 3 Articlenumber,page5of8 A&Aproofs:manuscriptno.jiang_hc3n_v11 Table2.HC N2-1spectralmeasurements.AllthetemperaturescalesareT .Thecolumnsare:(1)galaxyname,(2)on-source timeforeach 3 mb galaxy,(3)RMSnoiseofthesmoothedspectrum,(4)velocityresolutionofthesmoothedspectrum,(5)linewidth(FWHM)oftheGaussianfitof theline(ifavailable),(6)HC Nemissionlinecenter,(7)Integratedintensity(anderrors)ofHC N2-1emission.Forthosenon-detections,2σ 3 3 upperlimitsarepresented(seetextinSection3.1),(8)Integratedfluxdensity,and(9)fluxdensityratiobetweenHC N2-1andHCN1-0. 3 Source On-time RMS δV ∆V V0 I(HC3N) S(HC3N) HHCC3NN12−01 (min) (mK) (kms 1) (kms 1) (kms 1) (Kkms 1) (Jykms 1) − − − − − − (1) (2) (3) (4) (5) (6) (7) (8) (9) NGC660 28 4.2 32.2 260.7(90.6) 825(36) 1.47(0.40) 0.86(0.24) 0.034a ∼ IC342 20 6.5 20.1 52.0(12.9) 45(6) 0.77(0.18) 0.45(0.11) 0.005b M66 18 7.0 20.1 44.8(17.7) 775(7) 0.68(0.21) 0.4(0.12) ∼0.114c ∼ NGC520 14 5.7 ... ... ... <1.02 <0.6 <0.087d NGC891 30 2.3 ... ... ... <0.26 <0.15 <0.033e NGC972 33 3.8 ... ... ... <0.61 <0.36 ... NGC1068 25 4.0 ... ... ... <0.73 <0.43 <0.013f UGC2855 23 4.9 ... ... ... <0.76 <0.45 ... ∗ UGC2866 22 3.6 ... ... ... <0.56 <0.33 ... ∗ NGC1569 33 3.0 ... ... ... <0.31 <0.18 ... NGC2146 24 3.4 ... ... ... <0.67 <0.39 <0.021e NGC2403 30 3.2 ... ... ... <0.33 <0.19 ... M82 26 5.5 ... ... ... <0.73 <0.43 <0.011e NGC3079 19 5.5 ... ... ... <1.17 <0.69 <0.225e NGC3310 36 2.3 ... ... ... <0.29 <0.17 ... IC694+NGC3690 47 4.2 ... ... ... <0.72 <0.42 <0.158g Mrk231 44 6.4 ... ... ... <0.91 <0.54 <0.191g Arp220 26 4.5 ... ... ... <0.94 <0.55 <0.069h NGC6946 28 5.1 ... ... ... <0.64 <0.38 <0.018e Notes.(*)Theupperlimitsofthetwogalaxiesarederivedassuminga200kms 1linewidth. − HCN1-0datafrom:(a)Baanetal.(2008); (b)Nguyenetal.(1992);(c)Kripsetal.(2008);(d)Solomonetal.(1992); (e)Gao&Solomon(2004a); (f)Aladroetal.(2015);(g)Jiangetal.(2011); (h)Wangetal.(2016). Table3.HC N24-23spectralmeasurements.ColumnsarethesameasTable2. 3 Source On-time RMS δV ∆V V0 I(HC3N) S(HC3N) HHC3CNN214−023 (min) (mK) (kms 1) (kms 1) (kms 1) (Kkms 1) (Jykms 1) − − − − − − (1) (2) (3) (4) (5) (6) (7) (8) (9) NGC1068 121 1.2 39.1 257.3(24.0)a 1102(13) 2.03(0.18) 49.9(4.4) 0.59 ∼ IC342 132 2.7 20.9 100b 43 0.47(0.12) 11.6(3.0) 0.12 ∼ IC694 127 0.87 41.7 400b 3095 0.90(0.11) 22.1(2.7) 2.76 NGC2146 115 1.01 20.9 320c ... <0.17 4.2 ∼<0.26 M82 60 3.0 20.9 150c ... <0.34 8.4 <0.26 NGC3690 139 0.73 42.0 260c ... <0.15 3.7 <1.27 ARP220 162 0.75 39.1 420c ... <0.19 4.7 <0.48 NGC6240 97 0.92 20.1 420c ... <0.17 4.2 <1.15 NGC6946 168 1.76 21.0 130c ... <0.18 4.4 <0.26 Notes. (a) FWHMfrom the Gaussian fittingand error. (b) line window (full width) used to derived the integrated intensity. (c) CO width from Youngetal.(1995)thatareusedtoderivedtheupperlimits. amonggalaxies.Inthe HC N surveybyLindbergetal. (2011), HC N/HCO+also show large variance.In NGC 253 and M 82, 3 3 ratios like HC N/HCN were used to compare HC N between HC N10-9isonly 1/20asstrongasHCO+1-0,whileinArp 3 3 3 galaxies. Based on that ratio, IC 342 and M 82 were classi- 220HC N 10-9is n∼earlyas strongas HCO+1-0. In our results 3 fied as HC N-luminous galaxies. In our observation we detect suchlineratiosalsoshowlargediversity.Itisnotyetclearhow 3 both HC N 2-1 and HC N 24-23 in IC 342, but neither HC N to interpretthe ratio between HC N and other molecular lines, 3 3 3 3 transition is detected in M 82. On the other hand, we obtained andmoredataofHC Nindifferenttransitionswouldbehelpful 3 HC N 24-23 detections in NGC 1068 which were classified todisentangleitspropertiesindifferenttypesofgalaxies. 3 as a HC3N-poor galaxy in Lindbergetal. (2011). In the sam- Our observationsand other works have presented detection ple of some nearby galaxies observed by Aladroetal. (2015), of HC N emission lines from near 18 GHz up to 292 GHz. 3 theratiobetweenthepeaktemperature(Tmb)ofHC3N/HCNor The newly commissioned Tianma 65 m telescope i∼n Shanghai, Articlenumber,page6of8 Jiang,Wang,Gao&Gu:HC N observationsofNearbyGalaxies(RN) 3 China,isabletoobservelowtransitionHC Nemission,andhas 3 greatpotentialforfurtherHC N2-1surveysforlargesampleof 3 galaxies. 4. Summary We carry out single-dish observations towards a sample of nearby gas-rich galaxies with the Effelsberg telescope and the Submillimeter Telescope. This is the first measurements of HC N2-1inarelativelylargesampleofexternalgalaxies.Our 3 resultsinclude: 1. HC N(J=2-1)(ν=18.196GHz)wasobservedwiththe100- 3 m telescope in 20 galaxies and only three galaxies are de- tected(> 3σ):IC342,M66andNGC660.Thisisthefirst measurements of HC N 2-1 reported in external galaxies, 3 and the first HC N detection in M 66. We stack the spec- 3 traofthosenon-detectionsyetthereisstillnosignofHC N 3 emission. The 2σ upper limit of HC N intensity from the 3 stackedspectrumisabout0.12Kkms 1. − 2. HC N(J=24-23) (ν = 218.324 GHz) was observed in nine 3 galaxieswith the SMT, and it is detected in three galaxies: IC342,IC694andNGC1068. 3. IC 342 is the only galaxiesdetected in both HC N 2-1 and 3 HC N 24-23 transitions in our observations, and the two 3 transitions have similar line center and width, suggesting a similar emitting area. The ratio of integrated intensity of HC N24-23/HC N2-1isabout0.82.Duetothecontamina- 3 3 tionofCO2-1imagesignalintheuppersideband,M82and Arp220aretreatedasnon-detectionofHC N24-23. 3 4. The ratios between HC N and HCN, HCO+ show a large 3 variance among the galaxieswith HC N detections, imply- 3 ing different behavior of the molecular lines in galaxies. Moresampleareneededtobetterunderstandtherelationship betweenHC Nandothermolecules. 3 Acknowledgements. WethankthestaffoftheEffelsbergtelescopeandtheSMT fortheirkindhelpandsupportduringourobservations.Thisprojectisfundedby ChinaPostdoctoralScienceFoundation(grant2015M580438),NationalNatural ScienceFoundationofChina(grant11420101002,11311130491,11590783and 11603075),andtheCASKeyResearchProgramofFrontierSciences.Thisre- searchhasmadeuseofNASA’sAstrophysicsDataSystem,andtheNASA/IPAC ExtragalacticDatabase(NED),whichisoperatedbytheJetPropulsionLabora- tory,CaliforniaInstituteofTechnology,undercontractwiththeNationalAero- nauticsandSpaceAdministration. Articlenumber,page7of8 A&Aproofs:manuscriptno.jiang_hc3n_v11 References Aalto,S.,Monje,R.,&Martín,S.2007,A&A,475,4792,4 Aladro,R.,Martín,S.,Riquelme,D.,etal.2015,A&A,579,A1012,4,5,6 Aladro,R.,Martín-Pintado,J.,Martín,S.,Mauersberger,R.,&Bayet,E.2011, A&A,525,A891,2,3,4 Baan,W.A.,Henkel,C.,Loenen,A.F.,Baudry,A.,&Wiklind,T.2008,A&A, 477,7476 Baan,W.A.,Loenen,A.F.,&Spaans,M.2014,MNRAS,445,33311 Costagliola,F.&Aalto,S.2010,A&A,515,A712 Costagliola,F.,Aalto,S.,Rodriguez,M.I.,etal.2011,A&A,528,A30 1,2,3, 4 Costagliola, F., Sakamoto, K., Muller, S., et al. 2015, Astronomy and Astro- physics,582,A914 Evans,II,N.J.1999,ARA&A,37,3111 Fukui,Y.&Kawamura,A.2010,ARA&A,48,5471 Gao,Y.&Solomon,P.M.2004a,ApJS,152,632,3,6 Gao,Y.&Solomon,P.M.2004b,ApJ,606,2712 Ginard,D.,Fuente,A.,García-Burillo,S.,etal.2015,A&A,578,A494 Greve,T.R.,Papadopoulos,P.P.,Gao,Y.,&Radford,S.J.E.2009,ApJ,692, 14321 Henkel,C.,Baan,W.A.,&Mauersberger,R.1991,Astron.Astrophys.Rev.,3, 471 Henkel,C.,Schilke,P.,&Mauersberger,R.1988,A&A,201,L232 Irvine, W.M.,Goldsmith, P.F.,&Hjalmarson, A.1987,inAstrophysics and SpaceScienceLibrary,Vol.134,InterstellarProcesses,ed.D.J.Hollenbach &H.A.Thronson,Jr.,561–6092 Jiang,X.,Wang,J.,&Gu,Q.2011,MNRAS,418,17536 Krips,M.,Neri,R.,García-Burillo,S.,etal.2008,ApJ,677,2626 Lindberg,J.E.,Aalto,S.,Costagliola,F.,etal.2011,A&A,527,172,3,4,6 Meier,D.S.&Turner,J.L.2005,ApJ,618,2592,4 Meier,D.S.&Turner,J.L.2012,ApJ,755,1041,2,4 Meier,D.S.,Turner,J.L.,&Beck,S.C.2014,ApJ,795,1071,2,4 Meier,D.S.,Turner,J.L.,&Schinnerer,E.2011,AJ,142,322 Meier,D.S.,Walter,F.,Bolatto,A.D.,etal.2015,ApJ,801,634 Nguyen,Q.-R.,Jackson,J.M.,Henkel,C.,Truong,B.,&Mauersberger,R.1992, ApJ,399,5216 Sanders, D.B.,Mazzarella, J.M.,Kim, D.-C.,Surace, J.A.,&Soifer, B. T. 2003,AJ,126,16072,3 Solomon,P.M.,Downes,D.,&Radford,S.J.E.1992,ApJ,387,L556 Suzuki,H.,Yamamoto,S.,Ohishi,M.,etal.1992,ApJ,392,5511 Tsai,C.-W.,Turner,J.L.,Beck,S.C.,etal.2006,AJ,132,23834 Tsai,M.,Hwang,C.-Y.,Matsushita,S.,Baker,A.J.,&Espada,D.2012,ApJ, 746,1294 Turner,B.E.1971,ApJ,163,L351 Viti,S.,García-Burillo,S.,Fuente,A.,etal.2014,A&A,570,A281 Wang,J.,Zhang,Z.,&Shi,Y.2011,MNRAS,416,L212 Wang,J.,Zhang,Z.-Y.,Qiu,J.,etal.2014,ApJ,796,574 Wang,J.,Zhang,Z.-Y.,Zhang,J.,Shi,Y.,&Fang,M.2016,MNRAS,455,3986 6 Young,J.S.,Xie,S.,Tacconi,L.,etal.1995,ApJS,98,2193,6 Zhang,Z.-Y.,Gao,Y.,Henkel,C.,etal.2014,ApJ,784,L312 Articlenumber,page8of8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.