ebook img

Harris Manchester College Oxford University Oxford, England PDF

17 Pages·2016·1.03 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Harris Manchester College Oxford University Oxford, England

Galerkin-based meshless methods for photon transport in the biological tissue ChenghuQin,JieTian∗,XinYang,KaiLiu,GuoruiYan,Jinchao Feng,YujieLv,MinXu MedicalImageProcessingGroup KeyLaboratoryofComplexSystemsandIntelligenceScience InstituteofAutomationChineseAcademyofSciences P.O.Box2728,Beijing,100190,China [email protected] Abstract: As an important small animal imaging technique, optical imaging has attracted increasing attention in recent years. However, the photonpropagationprocessis extremelycomplicatedfor highly scattering propertyofthebiologicaltissue.Furthermore,thelighttransportsimulation intissuehasasignificantinfluenceoninversesourcereconstruction.Inthis contribution, we present two Galerkin-based meshless methods (GBMM) to determine the light exitance on the surface of the diffusive tissue. The twomethodsarebothbasedonmovingleastsquares(MLS)approximation which requires only a series of nodes in the region of interest, so compli- catedmeshingtaskcanbeavoidedcomparedwiththefiniteelementmethod (FEM).Moreover,MLSshapefunctionsarefurthermodifiedto satisfythe deltafunctionpropertyinonemethod,whichcansimplifytheprocessingof boundaryconditionsincomparisonwiththeother.Finally,theperformance of the proposed methods is demonstrated with numerical and physical phantomexperiments. © 2008 OpticalSocietyofAmerica OCIScodes:(170.3660)Lightpropagationintissues;(170.3880)Medicalandbiologicalimag- ing;(170.5280)Photonmigration Referencesandlinks 1. V.Ntziachristos,J.Ripoll,L.V.Wang,andR.Weissleder,“Lookingandlisteningtolight:theevolutionofwhole bodyphotonicimaging,”Nat.Biotechnol.23,313-320(2005). 2. G.Wang,W.Cong,H.Shen,X.Qian,M.Henry,andY.Wang,“Overviewofbioluminescencetomography–a newmolecularimagingmodality,”Front.Biosci.13,1281-1293(2008). 3. S.BhaumikandS.S.Gambhir,“OpticalimagingofRenillaluciferasereportergeneexpressioninlivingmice,” Proc.Natl.Acad.Sci.USA99,377-382(2002). 4. T.F.MassoudandS.S.Gambhir,“Molecularimaginginlivingsubjects:seeingfundamentalbiologicalprocesses inanewlight,”GenesDev.17,545-580(2003). 5. W.Rice,M.D.Cable,andM.B.Nelson,“Invivoimagingoflight-emittingprobes,”J.Biomed.Opt.6,432-440 (2001). 6. E.E.Graves,J.Ripoll,R.Weissleder,andV.Ntziachristos,“Asubmillimeterresolutionfluorescencemolecular imagingsystemforsmallanimalimaging,”Med.Phys.30,901-911(2003). 7. A. Cong and G. Wang, “A finite-element-based reconstruction method for 3D fluorescence tomography,” Opt. Express 13, 9847-9857 (2005), http://www.opticsinfobase.org/abstract.cfm?URI= oe-13-24-9847. 8. C. Contag and M. H. Bachmann, “Advances in bioluminescence imaging of gene expression,” Annu. Rev. Biomed.Eng.4,235-260(2002). #102140 - $15.00 USD Received 29 Sep 2008; revised 3 Nov 2008; accepted 11 Nov 2008; published 24 Nov 2008 (C) 2008 OSA 8 December 2008 / Vol. 16, No. 25 / OPTICS EXPRESS 20317 9. G. Wang, H. Shen, W. Cong, S. Zhao, and G. W. Wei, “Temperature-modulated bioluminescence tomog- raphy,” Opt. Express 14, 7852-7871 (2006), http://www.opticsinfobase.org/abstract.cfm? URI=oe-14-17-7852. 10. V.Y.Soloviev,“Tomographicbioluminescenceimagingwithvaryingboundaryconditions,”Appl.Opt.46,2778- 2784(2006),http://www.opticsinfobase.org/abstract.cfm?URI=ao-46-14-2778. 11. Y.Lv,J.Tian,W.Cong,G.Wang,W.Yang,C.Qin,andM.Xu,“Spectrallyresolvedbioluminescencetomogra- phywithadaptivefiniteelementanalysis:methodologyandsimulation,”Phys.Med.Biol.52,4497-4512(2007). 12. A.P.Gibson,J.C.Hebden,andS.R.Arridge,“Recentadvancesindiffuseopticalimaging,”Phys.Med.Biol. 50,R1-R43(2005). 13. W. Cong, A. Cong, H. Shen, Y. Liu, and G. Wang, “Flux vector formulation for photon propagation in the biological tissue,”Opt.Lett.32,2837-2839(2007),http://www.opticsinfobase.org/abstract. cfm?URI=ol-32-19-2837. 14. Y.Lv,J.Tian,W.Cong,G.Wang,J.Luo,W.Yang,andH.Li,“Amultileveladaptivefiniteelementalgorithm forbioluminescencetomography,” Opt.Express14,8211-8223(2006),http://www.opticsinfobase. org/abstract.cfm?URI=oe-14-18-8211. 15. A. Joshi, W. Bangerth, and E. Sevick-Muraca, “Adaptive finite element based tomography for fluorescence optical imaging intissue,” Opt. Express 12, 5402-5417 (2004), http://www.opticsinfobase.org/ abstract.cfm?URI=oe-12-22-5402. 16. A.Joshi,W.Bangerth,A.B.Thompson,andE.M.Sevick-Muraca,“Adaptivefiniteelementmethodsforfluo- rescenceenhancedfrequencydomainopticaltomography:forwardimagingproblem,”IEEEInternationalSym- posiumonBiomedicalImaging(ISBI2004)2,1103-1106(2004). 17. W.Cong,D.Kumar,Y.Liu,A.Cong,andG.Wang,“Apracticalmethodtodeterminethelightsourcedistribution inbioluminescentimaging,”Proc.SPIE5535,679-686(2004). 18. L.H.Wang,S.L.Jacques,andL.Q.Zheng,“MCML-MonteCarlomodelingofphotontransportinmulti-layered tissues,”Comput.Meth.Prog.Biomed.47,131-146(1995). 19. D.Boas,J.Culver,J.Stott,andA.Dunn,“ThreedimensionalMonteCarlocodeforphotonmigrationthrough complex heterogeneous media including the adult human head,” Opt. Express 10, 159-169 (2002), http: //www.opticsinfobase.org/abstract.cfm?URI=oe-10-3-159. 20. H.Li,J.Tian,F.Zhu,W.Cong,L.V.Wang,E.A.Hoffman,andG.Wang,“Amouseopticalsimulationenviron- ment(MOSE)toinvestigatebioluminescentphenomenainthelivingmousewithMonteCarlomethod,”Acad. Radiol.11,1029-1038(2004). 21. W.Cong, G.Wang,D.Kumar,Y.Liu,M.Jiang, L.V.Wang,E.A.Hoffman, G.McLennan, P.B. McCray, J.Zabner,andA.Cong,“Practicalreconstructionmethodforbioluminescencetomography,” Opt.Express13, 6756-6771(2005),http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-18-6756. 22. Y.Lv,J.Tian,H.Li,J.Luo,W.Cong,G.Wang,andD.Kumar,“Modelingtheforwardproblembasedonthe adaptiveFEMsframeworkinbioluminescencetomography,”Proc.SPIE6318,63180I(2006). 23. S.R.Arridge,H.Dehghani,M.Schweiger,andE.Okada,“Thefiniteelementmodelforthepropagationoflight inscatteringmedia:Adirectmethodfordomainswithnonscatteringregions,”Med.Phys.27,252-264(2000). 24. R.H.Bayford,A.Gibson,A.TizzardA,T.Tidswell,andD.S.Holder,“Solvingtheforwardprobleminelectrical impedancetomographyforthehumanheadusingIDEAS(integrateddesignengineeringanalysissoftware),a finiteelementmodellingtool,”Physiol.Meas.22,55-64(2001). 25. S. J. Koopman, A. C. Harvey, J.A. Doornick, and N. Shephard, Stamp 5.0:structural time series analyser, modellerandpredictor,(TheManual.Chapman&Hall,London,1995). 26. I.V.Singh,K.Sandeep,andR.Prakash,“TheelementfreeGalerkinmethodinthreedimensionalsteadystate heatconduction,”Int.J.Comput.Eng.Sci.3,291-303(2002). 27. I.V.Singh,“ParallelimplementationoftheEFGmethodforheattransferandfluidflowproblems,”Adv.Eng. Software34,453-463(2004). 28. T.Belytschko,L.Gu,andY.Y.Lu,“Fractureandcrackgrowthbyelement-freeGalerkinmethods,”Modelling Simul.Mater.Sci.Eng.2,519-534(1994). 29. G.Alexandrakis,F.R.Rannou,andA.F.Chatziioannou, “Tomographicbioluminescenceimagingbyuseofa combinedoptical-PET(OPET)system:acomputersimulationfeasibilitystudy,”Phys.Med.Biol.50,4225-4241 (2005). 30. M.Schweiger,S.R.Arridge,M.Hiraoka,andD.T.Delpy,“Thefiniteelementmethodforthepropagationof lightinscatteringmedia:Boundaryandsourceconditions,”Med.Phys.22,1779-1792(1995). 31. W.G.EganandT.W.Hilgeman,opticalpropertiesofinhomogeneousmaterials,(Academic,NewYork,1979). 32. T.Belytschko,Y.Y.Lu,andL.Gu,“Element-freeGalerkinmethod,”Int.J.Numer.MethodsEng.37,229-256 (1994). 33. J.DolbowandT.Belytschko, “Anintroduction toprogrammingthemeshlesselementfreeGalerkinmethod,” Arch.Comput.MethodsEng.5,207-241(1998). 34. X.ZhangandY.Liu,Meshlessmethods,(TsinghuaUniversityPress,Beijing,2004). 35. J.S.ChenandH.P.Wang,“Newboundaryconditiontreatmentsinmeshfreecomputationofcontactproblems,” Comput.MethodsAppl.Mech.Eng.187,441-468(2000). #102140 - $15.00 USD Received 29 Sep 2008; revised 3 Nov 2008; accepted 11 Nov 2008; published 24 Nov 2008 (C) 2008 OSA 8 December 2008 / Vol. 16, No. 25 / OPTICS EXPRESS 20318 36. S.Li,W.Hao,andW.K.Liu,“Numericalsimulationsoflargedeformationofthinshellstructuresusingmeshfree methods,”Comput.Mech.25,102-116(2000). 37. S.R.Arridge, M.Schweiger, M.Hiraoka, andD.T.Delpy, “Afinite elementapproach formodelingphoton transportintissue,”Med.Phys.20,299-309(1993). 38. J.Scho¨berl,“Netgenanadvancingfront2D/3D-meshgeneratorbasedonabstractrules,”Comput.Visual.Sci.1, 41-52(1997). 39. D.Qin,H.Zhao,Y.Tanikawa,andF.Gao,“Experimentaldeterminationofopticalpropertiesinturbidmedium byTCSPCtechnique,”Proc.SPIE6434,64342E(2007). 1. Introduction Molecular imaging is a very promising and rapidly developing biomedical research field in whichthemoderntoolsandmethodsarebeingmarriedtorepresentinvivocellularandmolec- ularprocessesdirectly,sensitively,non-invasivelyandspecifically,suchasmonitoringprotein- proteininteractions,geneexpression,celltraffickingandengraftment[1,2].Amongmolecular imagingmodalities,opticalimaging,especiallyfluorescenceandbioluminescenceimaging,has becomearesearchfocusoverthepastyearsforitsexcellentperformance,non-radiativityand highcost-effectivenesscomparedwithtraditionalimagingtechniqueslikeX-raycomputedto- mography(CT),magneticresonanceimaging(MRI),positronemissiontomography(PET)and singlephotonemissioncomputedtomography(SPECT)[3,4,5].Influorescencetechnology, thefluorophoreprobeinsidethetissueabsorbstheincidentexcitationphotonsproducedbythe externallightsource,andthendecaystoitsgroundstate,emittingthephotonssynchronously [6,7].Whereasbioluminescenceimagingemploysluciferaseenzymes,whichcancatalyzethe biochemical reactions of substrate luciferin to generate bioluminescent photons in the pres- ence of oxygen,ATP and Mg2+ [8, 9]. Although the photon generationschemes are various indifferentopticalimagingmodality,theemissionspectrumintheopticalengineeringfieldis generallyintheso-callednear-infraredlightwindowofthebiologicaltissue([650−900]nm), which can travel several centimeters in tissue due to the low photon absorption in the above spectralwindow[7,10,11]. The propagationofthe emission photonsin tissue can beaccuratelyrepresentedby thera- diative transfer equation (RTE) approximated from Maxwell’s equations, but it is extremely computationallyexpensiveforitsintegro-differentialnature[12,13].Therefore,thecommonly usedmathematicalmodelinopticalimagingfield isthediffusionequationderivedfromRTE in viewof highlyscatteringpropertyof thebiologicaltissue [12, 14, 15].Furthermore,many algorithmshavebeenpresentedto simulate lighttransportin the turbidtissue andpredictthe diffuselightfluxonthesurfaceofthesmallanimalbasedondiffusionmodel[16,17].Thecor- respondingsimulationresultscanbeemployednotonlytoverifythecorrectnessofthephysical model,butalsotogenerateasensitivitymatrixwhichrelatesthesurfacemeasurementstothe internalopticalpropertiesandwillbeemployedintheinverselightsourcereconstruction[12]. Itiswellknownthatanalytical,statisticalandnumericaltechniquesarethreekindsofmeth- odstosolvetheaforementioneddiffusionapproximationmodel[12,18,19,20].Amongthese methods,numericaltechniquesarestudiedwidelybecauseofitshighefficiencyandgoodap- plicability, and finite element method (FEM) is one of the most typical and successful algo- rithms. For example, Cong etal. [17, 21] employed FEM to obtain the photon flux density on the boundary of the homogeneous and heterogeneous phantoms. Lv etal. [22] used the adaptiveFEMtocomputethephotonenergydistributiononthephantomsurface.Inaddition, an improvedFEM was presented to handle light propagationin nonscatteringregionswithin diffusing domains by Arridge etal. [23]. However, finite element mesh generation and data pre-processingaredifficultandtime-consuming,especiallyforthree-dimensionalirregularob- jectswithcomplexinternalstructureliketheheterogeneousbiologicaltissue.Forinstance,the humanheadmodelwasdiscretizedinto155915elementsintheliterature[24].Whatismore, #102140 - $15.00 USD Received 29 Sep 2008; revised 3 Nov 2008; accepted 11 Nov 2008; published 24 Nov 2008 (C) 2008 OSA 8 December 2008 / Vol. 16, No. 25 / OPTICS EXPRESS 20319 Shephardetal.[25]reportedameshwithtwomilliontetrahedralelements!Althoughremark- able progresshasbeen made in generatingthe three-dimensionalstructuredmeshesfor FEM analysis of solids and structures, it is generally recognized that the development of fast and robustmeshingtechniquesof three-dimensionalobjectswith complexgeometricalshape and internalstructureisstillachallengeinpractice.Furthermore,forthelinearFEManalysis,mesh generationanddatapreparationbeforecalculationoftenneedmuchmoretimethantheassem- bly andsolutionof the FEM equations.Therefore,meshlessmethodsare exploredasa novel numericalanalysisapproachwhichcanavoidorgreatlysimplifymeshingtask,andtheyhave been successfully applied to solve problemsof solid mechanics,heat transfer,fluid flow, etc. [26,27,28]. In thiscontribution,two Galerkin-basedmeshlessmethods(GBMM) are proposedand de- velopedforsimulatingthephotonpropagationprocessinthebiologicaltissue.Comparedwith FEM, GBMM uses onlya set of discretized pointsand doesnotrequireany nodeconnectiv- ity or element information, which helps not only to avoid the burdensome meshing but also todescribecomplexinhomogeneousdomainsmoreaccurately.InGBMMalgorithms,moving leastsquares(MLS)approximationplaysanimportantrole,andtwokindsofGBMMmethods areprovidedinthispaperaccordingtowhethertheMLSshapefunctionsaremodified.Then,a linearmatrixformlinkingthesourcedistributionandthephotonfluxdensitycanbeestablished basedonGalerkinapproachandGausstheorywiththediffusionequationandRobinboundary condition. Moreover,our two proposed algorithms should incorporate apriori knowledge of thetissueopticalparameters,whichcanbeassignedonthebasisofavailabledatainliterature [29] or invivo diffuse optical tomography (DOT) measurements. The paper is organized as follows.ThenextsectionpresentsthedetailsoftheproposedGBMM, diffusionmodelbased methodsforphotonpropagationinthebiologicaltissue. Inthethirdsection,theperformance ofthetwomethodsisvalidatedusingnumericalandphysicalphantomsandcomparedwiththe simulationdatabasedonFEMorMCandthemeasuredphotonfluxdensitybyacooledCCD camera.Inthelastsection,relevantissuesarediscussedandconclusionsareprovided. 2. Methodology 2.1. Diffusionapproximationandboundarycondition Under the assumption that light scattering dominatesover absorption, the propagationof the emittingphotonsinthebiologicaltissuecanberepresentedbysteady-statediffusionequation whenacontinuouswaveexternalexcitationlightsourceisusedinfluorescenceimagingexper- imentorabioluminescentlightsourceisemployedinbioluminescencetechnology[7,14]: −(cid:209) · D(x)F(cid:209) (x) +m (x)F (x)=S(x) (x∈W ) (1) a (cid:0) (cid:1) where W is the region of interest; F (x) represents the photon flux density at location x [Watts/mm2]; S(x) denotes the internal source density [Watts/mm3]; m (x) is the absorption a coefficient [mm−1]; D(x)=(3(m (x)+(1−g)m (x)))−1 is the optical diffusion coefficient, a s m (x)thescatteringcoefficient[mm−1]andgtheanisotropyparameter. s Inordertoeliminatethediffusionapproximationerrornearthesurfacewherelightdoesnot propagate diffusively,an appropriateboundarycondition should be specified [12, 30]. When the optical imaging experimentis carried out in a totally dark environment,Robin boundary conditioncanbeemployed[21,30]: F (x)+2A(x;n,n′)D(x) v(x)·F(cid:209) (x) =0 (x∈¶ W ) (2) (cid:0) (cid:1) where¶ W isthecorrespondingboundaryofW ;v(x)referstotheunitnormalvectoroutwardto the boundary¶ W ; A(x;n,n′) isa functionto incorporatethemismatch betweenthe refractive #102140 - $15.00 USD Received 29 Sep 2008; revised 3 Nov 2008; accepted 11 Nov 2008; published 24 Nov 2008 (C) 2008 OSA 8 December 2008 / Vol. 16, No. 25 / OPTICS EXPRESS 20320 indicesnwithinW andn′ inthesurroundingmedium.Furthermore,A(x;n,n′)canbeapprox- imatelyexpressedasthefollowingformulawhentheimagingexperimentisperformedinair, forwhichn′≈1.0: A(x;n,n′)≈ 1+R(x) / 1−R(x) (3) whereR(x)isaparameterrelativetothei(cid:0)nternalre(cid:1)fle(cid:0)ctionat¶ (cid:1)W .Accordingtothereference [31], R(x) can be approximatedby R(x)≈−1.4399n−2+0.7099n−1+0.6681+0.0636n.In ourstudy,themeasuredoutgoingfluxdensityQ(x)on¶ W is: Q(x)=−D(x) v·F(cid:209) (x) =F (x)/ 2A(x;n,n′) (x∈¶ W ) (4) (cid:0) (cid:1) (cid:0) (cid:1) 2.2. Galerkin-basedmeshlessmethods 2.2.1. Movingleastsquaresapproximation The MLS approximation is the basis of the proposed GBMM algorithms. According to the literatures[32]and[33],thephotonfluxdensityF (x)atnodexcanbeapproximatedbyF h(x) intheregionofinterestW : m F (x)≈F h(x)= (cid:229) p (x)a (x)=pT(x)a(x) (5) j j j=1 where p (x)isthemonomialbasisfunctionofthespatialcoordinates,andmisthenumberof j thebasisfunctions;a (x)isthenon-constantcoefficientwhichcanbedeterminedbyminimiz- j ingthefollowingweighteddiscreteL normJ(x): 2 J(x)=(cid:229)Nn w(x−x)[pT(x)a(x)−F ]2 (6) i i i i=1 whereN isthenumberofthenodesintheregionofinterestW ;w(x−x)denotestheweight n i functionrelatedtothenodex,andx isapointinthesupportdomainofxforwhichw(x−x)6= i i 0;F istheapproximationtothevalueF (x)atthenodex,whichiscalledasthegeneralized i i photonfluxdensity. AftertheminimizationofJ(x),thefollowinglinearequationcanbeobtained: A(x)a(x)=B(x)F (7) where A(x)=(cid:229)Nn w(x−x)p(x)pT(x) (8) i i i i=1 B(x)=[w(x−x )p(x ),w(x−x )p(x ),···,w(x−x )p(x )] (9) 1 1 2 2 Nn Nn F =(F ,F ,···,F )T (10) 1 2 Nn Solving a(x) from Eq. (7) and inserting it into Eq. (5), we can obtain the following MLS approximationform: F h(x)=(cid:229)Nn N(x)F (11) i i i=1 wheretheshapefunctionN(x)isdefinedby i N(x)=pT(x)A−1(x)B(x) (12) i i whereB(x)standsfortheithcolumnofthematrixB(x). i #102140 - $15.00 USD Received 29 Sep 2008; revised 3 Nov 2008; accepted 11 Nov 2008; published 24 Nov 2008 (C) 2008 OSA 8 December 2008 / Vol. 16, No. 25 / OPTICS EXPRESS 20321 ThepartialderivativesofN(x)aregivenby i N (x)=pTA−1B +pT[A−1(B −A A−1B)] (13) i,s ,s i i,s ,s i wheresrepresentsthespace variablex, y orz, andthecommaindicatesthepartialderivative withregardtothespatialcoordinatethatfollows. FromEq.(12),we cansee thattheperformanceoftheMLSapproximationisgovernedby thebasisfunctionandtheweightfunction.Inthispaper,thequadraticbasisfunction pT(x)=[1,x,y,z,x2,xy,y2,yz,z2,zx], m=10 (14) andthefollowingquarticsplineweightfunctionareusedinthethree-dimensionalcaseaccord- ingtothereferences[33]and[34]. 1−6r2+8r3−3r4 0≤r≤1 w(r)= (15) (cid:26) 0 r>1 where r = kx−xk/d is the ratio of the Euclidean distance between the evaluation point i x and the sampling node x to the radius of the support domain d. Removing all the vari- i ablescorrelatedwithz-componentinthree-dimensionalGBMMprocedure,wecanobtaintwo- dimensionalGBMMprogrameasily. 2.2.2. ModifiedMLSshapefunction Substitutingx=x backintoEq.(11),wehave k F h(x )=(cid:229)Nn N(x )F =NTF (16) k i k i k i=1 where F designates the generalized photon flux density at all nodes in W , and N = k [N (x ),N (x ),···,N (x )]T.Andthen,Eq.(16)canbefurtherwrittenasthefollowingmatrix 1 k 2 k Nn k equation: F =LF (17) whereF denotesthenodalphotonfluxdensbity,andL isreferredtoasthetransformationmatrix [35,36].Theycanbeexpressedas: b F =[F h(x ),F h(x ),···,F h(x )]T (18) 1 2 Nn b N (x ) N (x ) ··· N (x ) 1 1 2 1 Nn 1 L = N1(...x2) N2(...x2) ·.·..· NNn...(x2)  (19)    N1(xNn) N2(xNn) ··· NNn(xNn)  Therefore,thegeneralizedphotonfluxdensitycanbeobtainedfromEq.(17): F =L −1F (20) and b F = (cid:229)Nn N(x)−1F (21) i l i l l=1 b whereL −1istheinversematrixofL .IncorporatingEq.(21)withEq.(11),wehave F h(x)=(cid:229)Nn N(x)(cid:229)Nn N(x)−1F = (cid:229)Nn M(x)F (22) i l i l l l i=1 l=1 l=1 b b #102140 - $15.00 USD Received 29 Sep 2008; revised 3 Nov 2008; accepted 11 Nov 2008; published 24 Nov 2008 (C) 2008 OSA 8 December 2008 / Vol. 16, No. 25 / OPTICS EXPRESS 20322 whereM(x)=(cid:229) Nn N(x)N(x)−1 iscalledmodifiedMLSshapefunction,anditsatisfiesthe l i=1 i l i Kroneckerdeltafunctionproperty: M(x )=(cid:229)Nn N(x )N(x)−1=d (23) l k i k l i lk i=1 2.2.3. Numericalimplementation According to whether modifying the MLS shape function, two meshless methods based on Galerkinapproacharedevelopedinthisarticle. UsingGalerkinmethodandGausstheory,Eqs.(1)and(2)canbetransformedtothefollow- ingweakform[30,37]: D(x) F(cid:209) (x) · Y(cid:209) (x) +m (x)F (x)Y (x) dx a ZW (cid:16) (cid:0) (cid:1) (cid:0) (cid:1) (cid:17) 1 + F (x)Y (x)dx= S(x)Y (x)dx (24) Z¶ W 2A(x;n,n′) ZW whereY (x)isatestfunctionfromSobolevspace.TheaforementionedEqs.(11)and(22)can berewritteninthefollowingunifiedform: F h(x)= (cid:229)Nn ¡ (x)G (25) l l l=1 where ¡ (x) represents N(x) in Eq. (11) or M(x) in Eq. (22); G denotes the generalized or l l l nodalphotonfluxdensity. Substituting Eq. (25) into Eq. (24) and using ¡ (x) as the test function, and then we can l obtainthematrixequationasfollows: (K+C+F)G =GG =S (26) wherethecomponentsofthematricesK,C,FandthevectorSaregivenby Kkl = W D(x) ¡(cid:209) k(x) · ¡(cid:209) l(x) dW  Ckl =RW m a(x)(cid:0)¡ k(x)¡ l((cid:1)x)(cid:0)dW (cid:1) (27)  Fkl = R¶ W ¡ k(x)¡ l(x)/ 2A(x;n,n′) d¶ W Sk= RW S(x)¡ k(x)dW (cid:0) (cid:1) SincethematrixGissymmetriRcandpositivedefinite[34],G canbeuniquelydeterminedfrom G =G−1S (28) When the MLS shape functions are employed, G that solved from Eq. (28) are only the generalizedphotonfluxdensityF becausetheMLSapproximationdoesnotpassthroughthe nodal function values according to the preceding subsection 2.2.1. In order to get the actual photonfluxdensity,thatisthenodalphotonfluxdensityF ,atanypointinthegivendomainW , weneedtousetheMLSapproximationagainwiththeformula: b F =[N (x ),N (x ),···,N (x )][F ,F ,···,F ]T (29) k 1 k 2 k Nn k 1 2 n whereF isthenodalbphotonfluxdensityatpointx ;N (x ),N (x ),···,N (x )aretheMLS k k 1 k 2 k Nn k shapefunctionswithoutmodification.However,thenodalphotonfluxdensitycanbeobtained b directlythroughsolvingEq.(28)whenweusethemodifiedMLSapproximation. Tosumup,theflowchartoftheabovetwoGBMMalgorithmsisshowninFig.1. #102140 - $15.00 USD Received 29 Sep 2008; revised 3 Nov 2008; accepted 11 Nov 2008; published 24 Nov 2008 (C) 2008 OSA 8 December 2008 / Vol. 16, No. 25 / OPTICS EXPRESS 20323 Fig.1.(a)TheflowchartoftheproposedGBMMalgorithmwithoutmodification;(b)The flowchartofthepresentedGBMMalgorithmwithmodification. 3. Experimentsandresults To evaluate the developed GBMM algorithms in this paper, numerical and physical phan- tom experiments were performed respectively. Furthermore, the computational results based onGBMMwerecomparedwiththesimulationdatabyFEMorMCandthemeasuredphoton fluxdensityusingaCCDcamera.Forthesakeofconvenience,GBMM1representstheGBMM algorithmwithoutmodification,andGBMM2indicatestheothermethodinthissection. #102140 - $15.00 USD Received 29 Sep 2008; revised 3 Nov 2008; accepted 11 Nov 2008; published 24 Nov 2008 (C) 2008 OSA 8 December 2008 / Vol. 16, No. 25 / OPTICS EXPRESS 20324 3.1. Numericalphantomexperiments 3.1.1. Homogeneousnumericalphantomexperiments Firstly, a homogeneous tissue-like phantom was used in this experiment, and a light source with a total power of 0.125nano−Watts was placed in the phantom with its center at (6.5358,7.1537,15.0729).InGBMMstudy,2178randompointsweredistributedintheabove phantom, as showed in Fig. 2(a). In addition, apriori optical parameters were specified as m =0.035,m =6.0,g=0.9andn=1.37torepresentthediffusivebiologicaltissue,which a s couldbeobtainedfromtheliterature[29].Finally,thelightexitancemaponthephantomsur- facewassolvedusingGBMM1andGBMM2proceduresrespectively,aspresentedinFig.2(b) and2(c).Furthermore,thecomputationalresultofGBMM1algorithmiscompletelyidentical tothatofGBMM2. Fig.2.Homogeneousnumericalphantom.(a)Ahomogeneoustissue-likephantomwitha seriesofnodesandalightsource;(b)and(c)ThesurfacelightpowersimulatedbyGBMM1 andGBMM2. In order to demonstratethe accuracy of GBMM, FEM was also employedto calculate the surfacephotonfluxdensity.InFEMframework,thephotonfluxdensitiesat24654discretized nodes were simulated, and then we used the interpolation method to determine the photon fluenceatthearrangedpointsinFig.2(a).Figure3(a)and3(b)givethevolumetricmeshused in FEM and the correspondingsimulation result respectively.The computationalphotonflux densitybasedonGBMM wasingoodagreementwiththenumericalresultbyFEM,withthe averagerelativeerrorbeingabout0.9%,asshowedinFig.3(c). Asweallknow,MCmethod,regardedasthe“goldstandard”,isrigorous,flexibleandpow- erfultostudyphotontransportphenomenainthebiologicaltissue,withwhichothernumerical techniques are often compared [12, 18, 19, 20, 30]. Therefore, MC approach was also used to verify the performance of the above two GBMM algorithms in this paper. In the simula- tion experiment,a cubic lightsource of 2.0mm side lengthand 1.0nano−Watts/mm3power densitywasplacedin(11.0,11.0,11.0),andfourcubephantomscenteredat(10.0,10.0,10.0) withdifferentsidelengthfrom5mmto15mmwereemployedtoobtaintheirrespectivesurface photonfluxes.Table 1 lists the correspondingcomparativedata betweenGBMM1, GBMM2, FEMandMCmethod.RE1,RE2andRE3inTable1aretherelativeerrors(RE)betweenthe computationalresultsbyGBMM1,GBMM2,FEMandthesimulationdatausingMCmethod respectively.ComparingtheGBMM,FEMsolutionwiththeMCsimulationresults,ithasfound that theyhave the same tendency,while the GBMM resultsare in better agreementwith MC simulationdatathantheFEMsolution.Furthermore,two GBMMmethodsinthispaperhave thesamecalculationprecision. #102140 - $15.00 USD Received 29 Sep 2008; revised 3 Nov 2008; accepted 11 Nov 2008; published 24 Nov 2008 (C) 2008 OSA 8 December 2008 / Vol. 16, No. 25 / OPTICS EXPRESS 20325 Fig.3.FEMsimulationforhomogeneousphantom.(a)ThevolumetricmeshusedinFEM simulation; (b) The photon flux density on the phantom surface calculated by FEM. (c) ComparisonofthecomputationalresultsbyGBMMandFEM. Table1.Photonflux(nano−Watts)simulationforhomogeneousphantom. Sidelength MC GBMM1 RE1 GBMM2 RE2 FEM RE3 5mm 45.26 45.86 1.32% 45.86 1.32% 45.89 1.39% 8mm 42.81 43.26 1.05% 43.26 1.05% 43.29 1.12% 12mm 39.13 39.35 0.56% 39.35 0.56% 39.39 0.66% 15mm 36.21 36.25 0.11% 36.25 0.11% 36.30 0.25% 3.1.2. Heterogeneousnumericalphantomexperiments A cubical heterogeneous phantom with 8000mm3 volume was utilized to further test the performance of the GBMM algorithms, and two cube light sources of 2.5mm side length and 1.0nano−Watts/mm3 power density were located at (6.25,6.25,11.25) and (13.75,13.75,11.25)intheabovephantomrespectively.Theopticalparameterswereassigned toeachofthetwocomponents,aslistedinTable2.InFig.4and5,weillustratetheabilityof our developedGBMM algorithmsto simulate photon transportin tissue in the multiple light sourcescase.We cansee thatthesimulationdatabyGBMM1andGBMM2isidentical.Fur- thermore, the average relative error of the results obtained using GBMM and FEM is about 2.40%. In order to better demonstrate the performance of GBMM1 and GBMM2, we com- paredGBMMphotonfluxdensitywithFEMcalculationalresultalongthedetectionsquareon thephantomsurfaceatheights5mm,10mmand15mmfromthebottomofthegeometricmodel, asshowedinFig.5(c)-5(e)respectively. Table2.Opticalparametersoftheheterogeneousphantom. m (mm−1) m (mm−1) g n a s Region1 0.035 6.0 0.9 1.37 Region2 0.01 4.0 0.9 1.37 Similarly,fourheterogeneouscubicphantomswithdifferentsidelengthfrom11mmto20mm weresetupfornumericalsimulationusingMCmethod.Acubelightsourcewithatotalvolume of8.0mm3andapowerdensityof1.0nano−Watts/mm3wasembeddedintothephantomswith itscenterat(11.0,11.0,11.0).Finally,thephotonfluxesontheboundaryofthephantomswere solved by GBMM1, GBMM2, FEM andMC respectively,see Table 3. There are no any dif- ferencebetweenthecomputationalresultsofGBMM1andthoseofGBMM2,andtheGBMM #102140 - $15.00 USD Received 29 Sep 2008; revised 3 Nov 2008; accepted 11 Nov 2008; published 24 Nov 2008 (C) 2008 OSA 8 December 2008 / Vol. 16, No. 25 / OPTICS EXPRESS 20326

Description:
We are pleased you are interested in Boston University School of Law's overseas program with Harris Manchester College, Oxford University, England.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.